The Comparison of Substrate Stability in Neuraminidase Type 2 (N2) Active Site between A/Tokyo/3/67 and A/Pennsylvania/10218/84 with Heating Dynamics Simulation

Abstract

A molecular dynamics simulation of two neuraminidase-sialic acid (NA-SA) complexes show a difference of the level of stability between sialic acid and neuraminidases that originated from viruses A/Tokyo/3/67 (Structure A) dan A/Pennsylvania/10218/84 (Structure B). Analyses of sialic acid RMSD and the change of torsional angles suggest that the sialic acid in Structure A is much more twisted and able to be influenced more by the binding of the neuraminidase functional residues than Structure B. Moreover, analyses upon hydrogen bond occupancy and binding free energy of both complexes showed that Structure A had more stable hydrogen bonds and each complex’s binding free energy were calculated to be –1.37 kcal/mol and 17.97 kcal/mol for Structure A and Structure B, respectively, further suggesting stability more dominant in Structure A than Structure B. Overall, Structure A has a more stable enzyme-substrate than Structure B.

Share and Cite:

S. Herlambang and R. Saleh, "The Comparison of Substrate Stability in Neuraminidase Type 2 (N2) Active Site between A/Tokyo/3/67 and A/Pennsylvania/10218/84 with Heating Dynamics Simulation," World Journal of Condensed Matter Physics, Vol. 1 No. 3, 2011, pp. 77-87. doi: 10.4236/wjcmp.2011.13013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] World Organization for Animal Health, “Avian Influenza: 2.7.12, Terrestrial Animal Health Code,” World Organi- zation for Animal Health, France, 2007.
[2] L. J. Mitnaul, M. N. Matrosovich, M. R. Castrucci, A. B. Tuzikov, N. V. Bovin, D. Kobasa and Y. Kawaoka, “Ba- lanced Hemagglutinin and Neuraminidase Activities Are Critical for Efficient Replication of Influenza A Virus,” Journal of Virology, Vol. 74, No. 13, 2000, pp. 6015- 6020. doi:10.1128/JVI.74.13.6015-6020.2000
[3] S. Tarigan, R. Indriani and Darminto, “Karakterisasi Aktivitas Enzimatik Neuraminidase Virus Influenza H5N1,” JITV, Vol. 12, No. 2, 2007, pp. 153-159.
[4] C. W. Lee, D. L. Suarez, T. M. Tum-pey, H. W. Sung, Y. K. Kwon, Y. J. Lee, S. J. Choi-Joh, M. C. Kim, E. K. Lee, J. M. Park, X. Lu, J. M. Katz, E. Spackman, D. E. Swayne and J. H. Kim, “Characterization of Highly Pa- tho-genic H5N1 Avian Influenza A Viruses Isolated from South Korea,” Journal of Virology, Vol. 79, No. 6, 2005, pp. 3692-3702. doi:10.1128/JVI.79.6.3692-3702.2005
[5] V. T. Peltola, K. G. Murti and J. A. McCullers, “The Influenza Virus Neuraminidase Contributes to Secondary Bacterial Pneumo-nia,” Journal of Infectious Diseases, Vol. 192, No. 2, 2005, pp. 249-257. doi:10.1086/430954
[6] T. Suzuki, T. Takahashi, C. T. Guo, K. L. P. J. Hidari, D. Miyamoto, H. Goto, Y. Kawaoka and Y. Suzuki, “Sialidase Activity of Influenza A Virus in an Endocytic Pathway Enhances Viral Replication,” Journal of Virology, Vol. 9, No. 18, 2005, pp. 11705-11715. doi:10.1128/JVI.79.18.11705-11715.2005
[7] T. M. Tumpey, D. L. Suarez, L. E. L. Perkins, D. A. Senne, J. Lee, Y. J. Lee, I. P. Mo, H.W. Sung and D. E. Swayne, “Characterization of a Highly Pathogenic H5N1 Avian Influenza A Virus Isolated from Duck Meat,” Journal of Virology, Vol. 76, No. 12, 2002, pp. 6344- 6355. doi:10.1128/JVI.76.12.6344-6355.2002
[8] E. Spackman, D. E. Swayne, D. L. Suarez, D. A. Senne, J. C. Pedersen, M. L. Killian, J. Pasick, K. Handel, S. P. S. Pillai, C. W. Lee, D. Stallknecht, R. Slemons, H. S. Ip and T. Deliberto, “Characterization of Low-Pathogenicity H5N1 Avian Influenza Viruses from North America,” Journal of Virology, Vol. 81, No. 21, 2007, pp. 11612- 11619. doi:10.1128/JVI.01368-07
[9] Anon, “Highly Pathogenic Avian Influenza (Fowl plague),” In: OIE manual of standards for diagnostic tests and vaccines,” 2nd ed. OIE, Paris, France, A15, 1992, pp. 123-129.
[10] R. A. Collins, L. S. Ko, K. L. So, T. L. Ellis, T. Lau, Y. A. C. Hoi, “A NASBA Method to Detect High- and Low- Pathogenicity H5 Avian Influenza Viruses,” JSTOR- Avian Diseases, Vol. 47, pp. 1069-1074.
[11] M. S. Pereira, P. Chakraverty and A. R. Pane, “The Influence of An-tigenic Variation on Influenza A2 Epidemics,” Journal of Hygiene Epidemiology Microbiology and Immunology, Vol. 67, 1969, pp. 551-557.
[12] N. V. Kaverin, I. A. Rudneva, N. A. Ilyushina, N. L. Varich, A. S. Lipatov, Y. A. Smirnov, E. A. Govorkova, A. K. Gitelman, D. K. Lvov and R. G. Webster, “Structure of Antigenic Sites on the Haemagglutinin Molecule of H5 Avian Influenza Virus and Phenotypic Variation of Es-cape Mutants,” Journal of General Virology, Vol. 83, 2002, pp. 2497-2505.
[13] Influenza Virus Sequence Database. http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database
[14] J. N. Varghese, J. L. Mc-Kimm-Breschkin, J. B. Caldwell, A. A. Kortt and P. M. Colman, “The Structure of the Complex between Influenza Virus Neuraminidase and Sialic Acid, the Viral Receptor,” Proteins, Vol. 14, No. 3, 1992, pp. 327-332. doi:10.1002/prot.340140302
[15] A Resource for Studying Biological Macromolecules. http://www.rcsb.org/pdb/home/home.do
[16] A. R. Leach, “Molecular Modelling: Principles and Applications,” 2nd Edi-tion, Prentice Hall, Upper Saddle River, 2001, pp. 165-181.
[17] E. Martz, “Homology Modeling for Beginners with Free Software,” June 2001. http://www.umass.edu/molvis/workshop/homolmod.htm
[18] X. L. Guo, D. Q. Wei, Y. S. Zhul and K. C. Chou, “Cleavage Mechanism of the H5N1 Hemagglutinin by Trypsin and Furin,” Amino Acids, Vol. 35, No. 2, 2008, pp. 375-382.
[19] P. Decha, T. Rungrotmongkol, P. Intharathep, M. Malaisree, O. Aruksa-kunwong, C. Laohpongspaisan, V. Para- suk, P. Sompornpisut, S. Pianwanit, S. Kokpol and S. Hannongbua, “Source of High Pathogenicity of an Avian Influenza Virus H5N1: Why H5 Is Better Cleaved by Furin,” Biophysical Journal, Vol. 95, No. 1, 2008, pp. 128-134. doi:10.1529/biophysj.107.127456
[20] V. Stoll, K. D. Stewart, C. J. Maring, S. Muchmore, V. Giranda, Y.-G. Y. Gu, G. Wang, Y. Chen, M. Sun, C. Zhao, A.L. Ken-nedy, D.L. Madigan, Y. Xu, A. Saldivar, W. Kati, G. Laver, T. Sowin, H.L. Sham, J. Greer, D. Kempf, “Influenza Neuramini-dase Inhibitors: Structure- Based Design of a Novel Inhibitor Series,” Biochemistry, Vol. 42, No. 3, 2003, pp. 718-727. doi:10.1021/bi0205449
[21] O. Aruksakunwong, M. Malisree, P. Decha, P. Som- pornpisut, V. Parasuk, S. Pianwanit and S. Hannongbua, “On the Lower Susceptibility of Oseltamivir to Influenza Neuraminidase Subtype than Those in N2 and N9,” Biophysical Journal, Vol. 92, No. 3, 2007, pp. 798-807. doi:10.1529/biophysj.106.092528
[22] M. Shu, Z. Lin, Y. Zhang, Y. Wu, H. Mei and Y. Jiang, “Molecular Dynamics Simulation of Oseltamivir Resistance in Neuraminidase of Avian Influennza H5N1 Virus,” J Mol Model, 2010.
[23] N. R. Taylor, M. von Itzstein. “Molecular Modeling Studies on Ligand Binding to Sialidase from Influenza Virus and the Mechanism of Catalysis,” Journal of Medicinal Chemistry, Vol. 7, No. 5, 2004, pp. 616-624.
[24] J. Gong, W. Xu and J. Zhang, “Structure and Functions of Influenza Virus Neuraminidase,” Current Medicinal Che- mistry, Vol. 14, No. 1, 2007, pp. 113-122. doi:10.2174/092986707779313444
[25] R. J. Russell, L. F. Haire, D. J. Stevens, P. J. Collins, Y. P. Lin, G. M. Blackburn, A. J. Hay, S. J. Gamblin and J. J. Skehel, “The Structure of H5N1 Avian Influenza Neuraminidase Suggests New Opportu-nities for Drug Design,” Nature, Vol. 443, No. 2006, pp. 45-49. doi:10.1038/nature05114
[26] R. Chachra, R.C. Rizzo, “Ori-gins of Resistance Conferred by the R292K Neuraminidase Mutation via Molecular Dynamics and Free Energy Calcula-tions,” Journal of Chemical Theory and Computation, Vol. 4, No. 9, 2008, pp. 1526-1540. doi:10.1021/ct800068v
[27] J. L. McKimm-Breschkin, A. Sahasrabudhe, T. J. Blick, M. McDonald, P. M. Colman, G. J. Hart, R. C. Bethell and J. N. Varghese, “Mutations in a Conserved Residue in the Influenza Virus Neuraminidase Active Site Decreases Sensitivity to Neu5Ac2en Derivatives,” The Journal of Virology, Vol. 72, No. 3, 1998, pp. 2456-2462.
[28] L. Le, E. Lee, K. Schulten and T. N. Truong, “Molecular Modeling of Swine Influenza A/H1N1, Spanish H1N1 and Avian H5N1 Flu N1 Neuraminidase Bound to Tamiflu and Relenza,” PloS Current Beta, Vol. 1, 2009, pp. 1015-1028.
[29] V. P. Mishin, F. G. Hayden and L. V. Gubareva, “Susceptibilities of Antiviral-Resistant Influenza Viruses to Novel Neuraminidase Inhibitors,” Antimicrobial Agents and Chemotherapy, Vol. 49, No. 11, 2005, pp. 4515-4520. doi:10.1128/AAC.49.11.4515-4520.2005
[30] T. G. Sheu, V. M. Deyde, M. Okomo-Adhiambo, R. J. Garten, X. Xu, R. A. Bright, E. N. Butler, T. R. Wallis, A. I. Klimov and L. V. Gubareva, “Surveillance for Neuraminidase Inhibitor Resis-tance among Human Influenza A and B Viruses Circulating Worldwide from 2004 to 2008,” Antimicrobial Agents and Chemotherapy, Vol. 52, No. 9, 2008, pp. 3284-3292.
[31] N. T. Wetherall, T. Trivedi, J. Zeller, C. Hodges-Savola, J. L. McKimm-Breschkin, M. Zambon and F. G. Hayden, “Evalua-tion of Neuraminidase Enzyme Assays Using Different Sub-strates to Measure Susceptibility of Influenza Clinical Isolates to Neuraminidase Inhibitors: Report of the Neuraminidase In-hibitor Susceptibility Network,” Journal of Clinical Microbi-ology, Vol. 41, No. 2, 2003, pp. 742-750. doi:10.1128/JCM.41.2.742-750.2003
[32] J. L. McKimm-Breschkin, T. Trivedi, A. Hampson, A. Hay, A. Klimov, M. Tashiro, F. G. Hayden and M. Zambon, “Neura-minidase Sequence Analysis and Susceptibilities of Influenza Virus Clinical Isolates to Zanamivir and Oseltamivir,” Antim-icrobial Agents and Chemotherapy, Vol. 47, No. 7, 2003, pp. 2264-2272. doi:10.1128/AAC.47.7.2264-2272.2003
[33] H. Yen, N. A. Ilyushina, R. Salomon, E. Hoffmann, R. G. Webster and E. A. Govorkova, “Neuraminidase Inhibitor-Resistant Recombinant A/Vietnam/1203/04 (H5N1) Influenza Viruses Retain Their Replication Efficiency and Pathogenicity in Vitro and in Vivo,” Journal of Virology, Vol. 81, No. 22, 2007, pp. 12418-12426. doi:10.1128/JVI.01067-07
[34] A. Meijer, A. Lackenby, O. Hungnes, B. Lina, S. van der Werf, B. Schweiger, M. Opp, J. Paget, J. van de Kassteele, J. Hay and M. Zambon, “Osel-tamivir-Resistant Influenza Virus A (H1N1), Europe, 2007-08 Season,” Emerging Infectious Diseases, Vol. 15, No. 11, 2009, pp. 552-560. doi:10.3201/eid1504.081280
[35] A. S. Monto, J. L. McKimm-Breschkin, C. Macken, A. W. Hampson, A. Hay, A. Klimov, M. Tashiro, R. G. Webster, M. Aymard, F. G. Hayden and M. Zambon, “Detection of Influenza Viruses Re-sistant to Neuraminidase Inhibitors in Global Surveillance dur-ing the First 3 Years of Their Use,” Antimicrobial Agents and Chemotherapy, Vol. 50, No. 7, 2006, pp. 2395-2402. doi:10.1128/AAC.01339-05
[36] D. Tamura, K. Mitamura, M. Yamazaki, M. Fujino, M. Nirasawa, K. Kimura, M. Kiso, H. Shimizu, C. Kawakami, S. Hiroi, S. Takahashi, M. Hata, H. Minagawa, Y. Kimura, S. Kaneda, S. Sugita, T. Horimoto, N. Sugaya and Y. Kawaoka, “Oseltamivir-Resistant Influenza A Viruses Circulating in Japan,” Journal of Clinical Microbiol-ogy, Vol. 47, No. 5, 2009, pp. 1424-1427. doi:10.1128/JCM.02396-08
[37] N. A. Roberts, “Treatment of Influenza with Neuraminidase Inhibitors: Virological Implica-tions,” The Royal Society, Vol. 356, No. 1416, 2001, pp. 1895-1897. doi:10.1021/ja8085643
[38] R. E. Amaro, X. Cheng, I. Ivanov, D. Xu and J. A. McCammon, “Characterizing Loop Dynamics and Li- gand Recognition in Human- and Avian-Type Influ-enza Neuraminidases via Generalized Born Molecular Dynam-ics and End-Point Free Energy Calculations,” Journal of the American Chemical Society, Vol. 13, No. 13, 2009, pp. 4702-4709.
[39] K. M. Masukawa, P. A. Kollman and I. D. Kuntz, “Investigation of Neuraminidase-Substrate Recognition Using Molecular Dynamics and Free Energy Calculations,” Journal of Medicinal Chemistry, Vol. 46, No. 26, 2003, pp. 5628-5637. doi:10.1021/jm030060q
[40] B. J. Smith, P. M. Colman, M. von Itzstein, B. Danylec and J. N. Varghese, “Analysis of Inhibitor Binding in Influenza Virus Neuramini-dase,” Protein Science, Vol. 10, No. 4, 2000, pp. 689-696. doi:10.1110/ps.41801
[41] M. von Itzstein, W. Y. Wu, G. B. Kok, M. S. Pegg, J. C. Dyason, B. Jin, T. V. Phan, M. L. Smythe, H. F. White, S. W. Oliver, P. M. Colman, J. N. Varghese, D. M. Ryan, J. M. Woods, R. C. Bethell, V. J. Hotham, J. M. Cameron and C. R. Penn, “Rational Design of Potent Sialidase-Based Inhibitors of Influenza Virus Replica-tion,” Nature, Vol. 363, 1993, pp. 418-423. doi:10.1038/363418a0

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.