Ab Initio Calculations of Optical Properties of TlBr and TlCl Radiation Detectors
Noureddine Amrane, Maamar Benkraouda, Fathalla Hamed
DOI: 10.4236/wjcmp.2011.13011   PDF   HTML     5,117 Downloads   10,196 Views   Citations


We report on ab initio calculations of the optical properties of TlBr and TlCl binary semiconductor compounds using the self-consistent scalar relativistic full potential linear augmented plane wave band method (FP-LAPW) within the local density approximation (LDA) including the generalized gradient approximation (GGA). The accurate calculations of linear optical function (refractive index, reflectance, coefficient of absorption, and both imaginary and real dielectric function) is performed in the photon energy range up to 20 eV. The predicted optical constants agree well with the available experimental data.

Share and Cite:

N. Amrane, M. Benkraouda and F. Hamed, "Ab Initio Calculations of Optical Properties of TlBr and TlCl Radiation Detectors," World Journal of Condensed Matter Physics, Vol. 1 No. 3, 2011, pp. 63-69. doi: 10.4236/wjcmp.2011.13011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. P. Singh, R. K. Singh and M. Rajagopalan, “Theoretical Investigations on Structural, Elastic and E- lectronic Properties of thallium halides,” Physica B: Condensed Matter, Vol. 406, No. 9, 2011, pp. 1717-1721.
[2] M.-H. Du, “First-Principles Study of Native Defects in TlBr: Carrier Trapping, Compensation, and Polarization Phenome-non,” Journal of Applied Physics, Vol. 108, No. 5, 2010, pp. 053506- 053510.
[3] W. Zou and W. Liu, “Comprehensive ab Initio Calculation and Simulation on the Low-Lying Electronic States of TlX (X = F, Cl, Br, I, and At),” Journal of Computational Chemistry, Vol. 30, No. 4, 2009, pp. 524-539. doi:10.1002/jcc.21080
[4] M. Ueta, H. Kanzaki, K. Kobaya-shi, Y. Toyo zawa and E. Hanamura, “Excitonic Processes in Solids,” Springer, Berlin, 1986.
[5] D. C. Hinson and J. R. Stevenson, “Optical Constants of TlCl and TlBr with a Comparison of the Kramers-Kronig and ‘Two-Angle’ Methods of Data Analysis,” Physical Review, Vol. 159, No. 3, 1967, pp. 711-716. doi:10.1103/PhysRev.159.711
[6] J. Kanamori and A. Kotani, “Core-Level Spectroscopy in Condensed Systems,” Springer, Berlin, 1988.
[7] V. F. Agekyan and Yu. A. Stepanov, “Optical and Structural Properties of Thallium Halide Microcrystals in a Porous Matrix,” Physics of the Solid State, Vol. 43, No. 4, 2001, pp. 763-765. doi:10.1134/1.1366007
[8] R. Clasen, “Non-Tetrahedrally Bonded Elements and Binary Compounds I,” Springer, Berlin, 1998.
[9] M. Gluyas, R. Hunter and B. W. James, “The Elastic Constants of Thallium Chloride in the Range 150 to 300 K,” Journal of Physics C: Solid State Physics, Vol. 8, No. 3, 1975, pp. 271-282.
[10] Sakuragi, et al., “IR Transmission Capabilities of Thallium Halide and Silver Halide Optical Fibers,” Adv. in Cerm., Vol. 2, 1981, pp. 84-93.
[11] J. Frandon and B. Lahaye, “Pertes Caractéristiques des électrons dans TlCl, TlBr, Tl I et Calcul des Fonctions Optiques Entre 3 et 25 eV,” Journal de Physique, Vol. 33, No. 2-3, 1982, pp. 229-235. doi:10.1051/jphys:01972003302-3022900
[12] V. F. Agekyan and Yu. A. Stepanov, “Optical and Structural Properties of Thallium Halide Microcrystals in a Porous Matrix,” Physics of the Solid State, Vol. 43, No. 4, 2001, pp. 763-765. doi:10.1134/1.1366007
[13] M. O. Kolinko and O. V. Bovgyra, “Calculation of The Spectra Of Characteristic Electron Losses In Indium Bromide,” Semiconductor Physics, Quantum Electronics & Optoelectronics, Vol. 10, No. 3, 2007, pp. 19-22.
[14] V. Yannopapas and A. Moroz, “Negative Refractive Index Metamaterials from Inherently Non-Magnetic Materials for Deep Infrared to Terahertz Frequency Ranges,” Jour-nal of Physics: Condensed Matter, Vol. 17, No. 25, 2005, pp. 3717-3734. doi:10.1088/0953-8984/17/25/002
[15] K. Schwarz, P. Blaha and G. K. H. Madsen, “Proceedings of the Europhysics Conference on Computational Physics Computa-tional Modeling and Simulation of Complex Systems,” Computer Physics Communications, Vol. 147, No. 1-2, 2002, pp. 71-76. doi:10.1016/S0010-4655(02)00206-0
[16] K. Schwarz and P. Blaha, “Proceedings of the Symposium on Software Develop-ment for Process and Materials Design,” Computational Mate-rials Science, Vol. 28, No. 2, 2003, pp. 259-273. doi:10.1016/S0927-0256(03)00112-5
[17] D. M. Ceperley and B. I. Alder, “Ground State of the Electron Gas by a Stochastic Method,” Physical Review Letters, Vol. 45, No. 7, 1990, pp. 566-569. doi:10.1103/PhysRevLett.45.566
[18] E. Wimmer, H. Kra-kauer and M. Weinert, “Full-Potential Self-Consistent Lin-earized-Augmented-Plane-Wave Method for Calculating the Electronic Structure of Molecules and Surfaces: O2 Molecule,” Physical Review B, Vol. 24, No. 2, 1981, pp. 864-875. doi:10.1103/PhysRevB.24.864
[19] P. Blaha, K. Schwarz, P. Sorantin and S. B. Trikey, “Full-Potential, Linearized Aug-mented Plane Wave Programs for Crystalline Systems,” Com-puter Physics Com- munications, Vol. 59, No. 2, 1990, 399-415. doi:10.1016/0010-4655(90)90187-6
[20] O. K. Andersen, “Linear Methods in Band Theory,” Physical Review B, Vol. 12, No. 8, 1975, pp. 3060-3083. doi:10.1103/PhysRevB.12.3060
[21] D. Singh, “Ground-State Properties of Lanthanum: Treatment of Extended-Core States,” Physical Review B, Vol. 43, No. 8, 1991, pp. 6388-6392. doi:10.1103/PhysRevB.43.6388
[22] E. Sj?stedt, L. Nordstr?m and D. J. Singh, “An Alternative Way of Linearizing the Aug-mented Plane-Wave Method,” Solid State Communications, Vol. 114, No. 1, 2000, pp. 15-20.
[23] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvanicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program For Calculating Crystal properties, Vienna University of Technology, Austria 2001.
[24] H. J. Monkhorst and D. Pack, “Special Points for Brillouin-Zone Integrations,” Physical Review B, Vol. 13, No. 12, 1976, pp. 5188-5192. doi:10.1103/PhysRevB.13.5188
[25] F. D. Murnaghan, “The Compressibility of Media under Extreme Pressures,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 30, No. 9, 1944, pp. 244-247.
[26] M. A. Popova, T. J. Darvojda and M. A. Gurevich, “Thermochemistry of Some Refractory Compounds,” Zhurnal Neorgani-cheskoi Khimii, Vol. 11, 1966, pp. 1236-1238.
[27] Y. Fujii, T. Sakuma, J. Nakahara, S. Hoshino, K. Kobayashi and A. Fujii, “Neutron Scattering Study of Phonon Dispersion Relations along [110] in TlCl,” Journal of Physical Society of Japan, Vol. 44, 1978, pp. 1237-1240. doi:10.1143/JPSJ.44.1237
[28] J. P. van Dyke and G. A. Samara, “Thallous Halides: Pressure Dependence of the Energy-Band Structure and the Insulator-Metal Transition,” Physical Review B, Vol. 11, No. 12, 1975, pp. 4935-4944. doi:10.1103/PhysRevB.11.4935
[29] R. P. Lowndes, “Anhar-monicity in the Silver and Thallium Halides: FarInfrared Dielectric Response,” Physical Review B, Vol. 6, No. 4, 1972, pp. 1490-1498. doi:10.1103/PhysRevB.6.1490
[30] G. A. Samara, “Tempera-ture and Pressure Dependence of the Dielectric Constants of the Thallous Halides,” Physical Review, Vol. 165, No. 3, 1968, pp. 959-969. doi:10.1103/PhysRev.165.959
[31] J. Nakahara, K. Kobayashi and A. Fujii, “Edge Absorption Stimulated by Disorder in Mixed Crystals of Thallous Halides,” Journal of Physical Society of Japan, Vol. 37, 1974, pp. 1319-1324. doi:10.1143/JPSJ.37.1319.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.