Dark Energy Stars and the Cosmic Microwave Background

Abstract

Cosmological models with a large cosmological constant are unstable due to quantum critical fluctuations at the de Sitter horizon. Due to this instability the space-time in these models will quickly evolve into a Friedmann-like expanding universe containing dark energy stars and radiation. In this paper it is pointed out that this provides a simple explanation for both the observed radiation entropy per gram of dark matter and the level of temperature fluctuations in the cosmic microwave background. A novel prediction is that large dark energy stars provide the seeds for the formation of galaxies.

Share and Cite:

Chapline, G. (2015) Dark Energy Stars and the Cosmic Microwave Background. Open Access Library Journal, 2, 1-7. doi: 10.4236/oalib.1101174.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Lemaitre, G. (1931) A Homogeneous Universe of Constant Mass and Increasing Radius. Monthly Notices of the Royal Astronomical Society, 91, 483-490.
http://dx.doi.org/10.1093/mnras/91.5.483
[2] Eddington, A.S. (1931) The End of the World from the Standpoint of Mathematical Physics. Nature, 127, 447-453.
http://dx.doi.org/10.1038/127447a0
[3] Lemaitre, G. (1931) The Beginning of the World from the Point of View of Quantum Theory. Nature, 127, 706.
http://dx.doi.org/10.1038/127706b0
[4] Chapline, G. (1992) Information Flow in Quantum Mechanics: The Quantum Maxwell Demon. Black, T., et al., Eds., Proceedings of the Santa Fe Conference on the Foundations of Quantum Mechanics, World Scientific, Singapore.
[5] Chapline, G., Hohfield, E., Laughlin, R.B. and Santiago, D. (2001) Quantum Phase Transitions and the Breakdown of Classical General Relativity. Philosophical Magazine Part B, 81, 235-254.
http://dx.doi.org/10.1080/13642810108221981
[6] Braunstein, S.L., Pirandola, S. and Zyczkowski, K. (2013) Better Late than Never: Information Retrieval from Black Holes. Physical Review Letters, 110, Article ID: 101301.
http://dx.doi.org/10.1103/PhysRevLett.110.101301
[7] Chapline, G. (2004) Dark Energy Stars. Proceedings of the Texas Conference on Relativistic Astrophysics, Stanford, 12-17 December 2004.
[8] Mottola, E. (2010) New Horizons in Gravity: The Trace Anomaly, Dark Energy and Condensate Stars. Acta Physica Polonica, B41, 2031.
[9] Kolb, E.R. and Turner, M. (1990) The Early Universe. Addison-Wesley, New York.
[10] Lemaitre, G. (1997) The Expanding Universe. General Relativity and Gravitation, 29, 641-680.
http://dx.doi.org/10.1023/A:1018855621348
[11] Nauenberg, M. and Chapline, G. (1973) Determination of the Properties of Cold Stars in General Relativity by a Variational Method. The Astrophysical Journal, 179, 277-287.
http://dx.doi.org/10.1086/151868
[12] Komatsu, E., Dunkley, J., Nolta, M.R., Bennett, C.L., Gold, B., Hinshaw, G., et al. (2009) Five Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series, 180, 330-376.
[13] Chapline, G. (2003) Quantum Phase Transitions and the Failure of General Relativity. International Journal of Modern Physics A, 18, 3587-3590.
http://dx.doi.org/10.1142/S0217751X03016380
[14] Chapline, G. (1975) Hadron Physics and Primordial Black Holes. Physical Review D, 12, 2949-2954.
http://dx.doi.org/10.1103/PhysRevD.12.2949
[15] Harrison, E. (1970) Fluctuations at the Threshold of Classical Cosmology. Physical Review D, 1, 2726-2730.
http://dx.doi.org/10.1103/PhysRevD.1.2726
[16] Zeldovich, Y.B. (1972) A Hypothesis, Unifying the Structure and the Entropy of the Universe. Monthly Notices of the Royal Astronomical Society, 160, 1P-3P.
http://dx.doi.org/10.1093/mnras/160.1.1P
[17] Peebles, P.J.E. and Yu, J.T. (1970) Primordial Adiabatic Perturbation in an Expanding Universe. The Astrophysical Journal, 162, 815-836.
http://dx.doi.org/10.1086/150713
[18] Chapline, G. (2009) Dark Energy Stars and AdS/CFT. Proceedings of the 12th Marcel Grossman Meeting, Paris, 12-18 July 2009, 2312-2314.
[19] Schneider, P., Ehlers, J. and Falco, E.E. (1992) Gravitational Lenses. Springer, Heidelberg.
[20] Alcock, C., Allen, W.H., Allsman, R.A., Alves, D., Axelrod, T.S., Banks, T.S., et al. (1997) MACHO Alert 95-30: First Real-Time Observation of Extended Source Effects in Gravitational Microlensing. The Astrophysical Journal, 491, 436-450.
http://dx.doi.org/10.1086/304974
[21] Bennett, C.L., Kogut, A., Hinshaw, G., Banday, A.J., Wright, E.L., Gorski, K.M., et al. (1994) Cosmic Temperature Fluctuations from Two Years of COBE Differential Microwave Radiometers Observations. The Astrophysical Journal, 436, 423-442.
http://dx.doi.org/10.1086/174918
[22] Blumenthal, G., Faber, S., Primack, J.R. and Rees, M.J. (1984) Formation of Galaxies and Large Scale Structure with Cold Dark Matter. Nature, 311, 517-525.
http://dx.doi.org/10.1038/311517a0
[23] Feynman, R.P. (2003) Lectures on Gravitation. Westview Press, Boulder, 181-184.
[24] Khlopov, M.Y., Rubin, S.G. and Sakharov, A. (2002) Strong Primordial Inhomogeneities and Galaxy Formation. Gravitation & Cosmology, 8, 57-65.
[25] Lemaitre, G. (1931) A Homogeneous Universe of Constant Mass and Increasing Radius. Monthly Notices of the Royal Astronomical Society, 91, 483-490.
http://dx.doi.org/10.1093/mnras/91.5.483
[26] Eddington, A.S. (1931) The End of the World from the Standpoint of Mathematical Physics. Nature, 127, 447-453.
http://dx.doi.org/10.1038/127447a0
[27] Lemaitre, G. (1931) The Beginning of the World from the Point of View of Quantum Theory. Nature, 127, 706.
http://dx.doi.org/10.1038/127706b0
[28] Chapline, G. (1992) Information Flow in Quantum Mechanics: The Quantum Maxwell Demon. Black, T., et al., Eds., Proceedings of the Santa Fe Conference on the Foundations of Quantum Mechanics, World Scientific, Singapore.
[29] Chapline, G., Hohfield, E., Laughlin, R.B. and Santiago, D. (2001) Quantum Phase Transitions and the Breakdown of Classical General Relativity. Philosophical Magazine Part B, 81, 235-254.
http://dx.doi.org/10.1080/13642810108221981
[30] Braunstein, S.L., Pirandola, S. and Zyczkowski, K. (2013) Better Late than Never: Information Retrieval from Black Holes. Physical Review Letters, 110, Article ID: 101301.
http://dx.doi.org/10.1103/PhysRevLett.110.101301
[31] Chapline, G. (2004) Dark Energy Stars. Proceedings of the Texas Conference on Relativistic Astrophysics, Stanford, 12-17 December 2004.
[32] Mottola, E. (2010) New Horizons in Gravity: The Trace Anomaly, Dark Energy and Condensate Stars. Acta Physica Polonica, B41, 2031.
[33] Kolb, E.R. and Turner, M. (1990) The Early Universe. Addison-Wesley, New York.
[34] Lemaitre, G. (1997) The Expanding Universe. General Relativity and Gravitation, 29, 641-680.
http://dx.doi.org/10.1023/A:1018855621348
[35] Nauenberg, M. and Chapline, G. (1973) Determination of the Properties of Cold Stars in General Relativity by a Variational Method. The Astrophysical Journal, 179, 277-287.
http://dx.doi.org/10.1086/151868
[36] Komatsu, E., Dunkley, J., Nolta, M.R., Bennett, C.L., Gold, B., Hinshaw, G., et al. (2009) Five Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series, 180, 330-376.
[37] Chapline, G. (2003) Quantum Phase Transitions and the Failure of General Relativity. International Journal of Modern Physics A, 18, 3587-3590.
http://dx.doi.org/10.1142/S0217751X03016380
[38] Chapline, G. (1975) Hadron Physics and Primordial Black Holes. Physical Review D, 12, 2949-2954.
http://dx.doi.org/10.1103/PhysRevD.12.2949
[39] Harrison, E. (1970) Fluctuations at the Threshold of Classical Cosmology. Physical Review D, 1, 2726-2730.
http://dx.doi.org/10.1103/PhysRevD.1.2726
[40] Zeldovich, Y.B. (1972) A Hypothesis, Unifying the Structure and the Entropy of the Universe. Monthly Notices of the Royal Astronomical Society, 160, 1P-3P.
http://dx.doi.org/10.1093/mnras/160.1.1P
[41] Peebles, P.J.E. and Yu, J.T. (1970) Primordial Adiabatic Perturbation in an Expanding Universe. The Astrophysical Journal, 162, 815-836.
http://dx.doi.org/10.1086/150713
[42] Chapline, G. (2009) Dark Energy Stars and AdS/CFT. Proceedings of the 12th Marcel Grossman Meeting, Paris, 12-18 July 2009, 2312-2314.
[43] Schneider, P., Ehlers, J. and Falco, E.E. (1992) Gravitational Lenses. Springer, Heidelberg.
[44] Alcock, C., Allen, W.H., Allsman, R.A., Alves, D., Axelrod, T.S., Banks, T.S., et al. (1997) MACHO Alert 95-30: First Real-Time Observation of Extended Source Effects in Gravitational Microlensing. The Astrophysical Journal, 491, 436-450.
http://dx.doi.org/10.1086/304974
[45] Bennett, C.L., Kogut, A., Hinshaw, G., Banday, A.J., Wright, E.L., Gorski, K.M., et al. (1994) Cosmic Temperature Fluctuations from Two Years of COBE Differential Microwave Radiometers Observations. The Astrophysical Journal, 436, 423-442.
http://dx.doi.org/10.1086/174918
[46] Blumenthal, G., Faber, S., Primack, J.R. and Rees, M.J. (1984) Formation of Galaxies and Large Scale Structure with Cold Dark Matter. Nature, 311, 517-525.
http://dx.doi.org/10.1038/311517a0
[47] Feynman, R.P. (2003) Lectures on Gravitation. Westview Press, Boulder, 181-184.
[48] Khlopov, M.Y., Rubin, S.G. and Sakharov, A. (2002) Strong Primordial Inhomogeneities and Galaxy Formation. Gravitation & Cosmology, 8, 57-65.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.