The Role of Death Domains Superfamily in Multiple Sclerosis Pathogenesis

DOI: 10.4236/oalib.1101210   PDF   HTML   XML   657 Downloads   930 Views  


Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS), mediated by several immune cells. Oligodendrocytes are responsible for the formation and maintenance of myelin around multiple axons. In MS oligodendrocytes are the targets of inflammatory and immune attacks. Thus, the destruction of a single oligodendrocyte, possibly by apoptosis, results in the loss of myelin around several axons and the loss of many oligodendrocytes limiting the ability to repair or regenerate demyelinated areas. Apoptosis is mediated by an aggregation of various protein components, specifically death domains (DD) superfamily. This superfamily is composed of the death domain (DD), the death effector domain (DED), the caspase recruitment domain (CARD) and the pyrin domain (PYD) subfamilies. Within each subfamily, members form homotypic interactions and facilitate the assembly of oligomeric signaling complexes. Members of the death domain superfamily are critical components of apoptotic and inflammatory signaling. We summarize the structure and functions of the DD superfamily, and describe the role of the DD proteins in oligodendrocytes death and proinflammatory activation in MS pathogenesis.

Share and Cite:

Hamid, K. and Mirshafiey, A. (2015) The Role of Death Domains Superfamily in Multiple Sclerosis Pathogenesis. Open Access Library Journal, 2, 1-11. doi: 10.4236/oalib.1101210.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mirshafiey, A., Matsuo, H., Nakane, S., Rehm, B.H., Koh, C.S. and Miyoshi, S. (2005) Novel Immunosuppressive Therapy by M2000 in Experimental Multiple Sclerosis. Immunopharmacology and Immunotoxicology, 27, 255-265.
[2] Cudrici, C., Niculescu, T., Niculescu, F., Shin, M.L. and Rus, H. (2006) Oligodendrocyte Cell Death in Pathogenesis of Multiple Sclerosis: Protection of Oligodendrocytes from Apoptosis by Complement. Journal of Rehabilitation Research and Development, 43, 123-132.
[3] Korn, T. (2008) Pathophysiology of Multiple Sclerosis. Journal of Neurology, 225, 2-6.
[4] Mc Guire, C., Volckaert, T., Wolke, U., Sze, M., de Rycke, R., Waisman, A., et al. (2010) Oligodendrocyte-Specific FADD Deletion Protects Mice from Autoimmune-Mediated Demyelination. Journal of Immunology, 185, 7646-7653.
[5] Mirshafiey, A. (2007) Novel Promising Therapeutic Agents in Multiple Sclerosis. Recent Patents on Inflammation and Allergy Drug Discovery, 1, 218-224.
[6] Raine, C.S. (1997) The Neuropathology of Multiple Sclerosis. In: Raine, C.S., McFarland, H.F. and Tourtellotte, W.W., Eds., Multiple Sclerosis Clinical and Pathogenetic Basis, Chapman & Hall Medical, London, 151-171.
[7] Proskuryakov, S.Y., Konoplyannikov, A.G. and Gabai, V.L. (2003) Necrosis: A Specific Form of Programmed Cell Death? Experimental Cell Research, 283, 1-16.
[8] Elmore, S. (2007) Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35, 495-516.
[9] McEntyre, J.R. and Gibson, T.J. (2004) Patterns and Clusters within the PSM Column in TiBS, 1992-2004. Trends in Biochemical Sciences, 29, 627-633.
[10] Valmiki, M.G. and Ramos, J.W. (2009) Death Effector Domain-Containing Proteins. Cellular and Molecular Life Sciences, 66, 814-830.
[11] Kohl, A. and Grütter, M.G. (2004) Fire and Death: The Pyrin Domain Joins the Death-Domain Superfamily. Comptes Rendus Biologies, 327, 1077-1086.
[12] Ferrao, R. and Wu, H. (2012) Helical Assembly in the Death Domain (DD) Superfamily. Current Opinion in Structural Biology, 22, 241-247.
[13] Reed, J.C., Doctor, K.S. and Godzik, A. (2004) The Domains of Apoptosis: A Genomics Perspective. Science’s Signal Transduction Knowledge Environment, 2004, re9.
[14] Lahm, A., Paradisi, A., Green, D.R. and Melino, G. (2003) Death Fold Domain Interaction in Apoptosis. Cell Death and Differentiation, 10, 10-12.
[15] Huang, B., Eberstadt, M., Olejniczak, E.T., Meadows, R.P. and Fesik, S.W. (1996) NMR Structure and Mutagenesis of the Fas (APO-1/CD95) Death Domain. Nature, 384, 638-641.
[16] Park, H.H., Lo, Y., Lin, S., Wang, L., Yang, J.K. and Wu, H. (2007) The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation. Annual Review of Immunology, 25, 561-586.
[17] Park, H.H. and Wu, H. (2006) Crystal Structure of RAIDD Death Domain Implicates Potential Mechanism of PIDDosome Assembly. Journal of Molecular Biology, 357, 358-364.
[18] Xiao, T., Towb, P., Wasserman, S.A and Sprang, S.R. (1999) Three-Dimensional Structure of a Complex between the Death Domains of Pelle and Tube. Cell, 99, 545-555.
[19] Lin, S.C., Lo, Y.C. and Wu, H. (2010) Helical Assembly in the MyD88-IRAK4-IRAK2 Complex in TLR/IL-1R Signalling. Nature, 465, 885-890.
[20] Eberstadt, M., Huang, B., Chen, Z., Meadows, R.P., Ng, S-C., Zheng, L., et al. (1998) NMR Structure and Mutagenesis of the FADD (Mort1) Death-Effector Domain. Nature, 392, 941-945.
[21] Hill, J.M., Vaidyanathan, H., Ramos, J.W., Ginsberg, M.H. and Werner, M.H. (2002) Recognition of ERK MAP Kinase by PEA-15 Reveals a Common Docking Site within the Death Domain and the Death Effector Domain. The EMBO Journal, 21, 6494-6504.
[22] Yang, J.K., Wang, L., Zheng, L., Wan, F., Ahmed, M., Lenardo, M.J. and Wu, H. (2005) Crystal Structure of MC159 Reveals Molecular Mechanism of DISC Assembly and FLIP Inhibition. Molecular Cell, 20, 939-949.
[23] Li, F.Y., Jeffrey, P.D., Yu, J.W. and Shi, Y. (2006) Crystal Structure of a Viral FLIP: Insights into FLIP-Mediated Inhibition of Death Receptor Signaling. Journal of Biological Chemistry, 281, 2960-2968.
[24] Humke, E.W., Shriver, S.K., Starovasnik, M.A., Fairbrother, W.J. and Dixit, V.M. (2000) ICEBERG: A Novel Inhibitor of Interleukin-1β Generation. Cell, 103, 99-111.
[25] Vaughn, D.E., Rodriguez, J., Lazebnik, Y. and Joshua-Tor, L. (1999) Crystal Structure of the Apaf-1 Caspase Recruitment Domain: An α-Helical Greek Key Fold for Apoptotic Signaling. Journal of Molecular Biology, 293, 439-447.
[26] Bae, J.Y. and Park, H.H. (2011) Crystal Structure of NALP3 Protein Pyrin Domain (PYD) and Its Implications in Inflammasome Assembly. Journal of Biological Chemistry, 286, 39528-39536.
[27] Hiller, S., Kohl, A., Fiorito, F., Herrmann, T., Wider, G., Tschopp, J., et al. (2003) NMR Structure of the Apoptosis and Inflammation-Related NALP1 Pyrin Domain. Structure, 11, 1199-1205.
[28] Day, C.L., Dupont, C., Lackmann, M., Vaux, D.L. and Hinds, M.G. (1999) Solution Structure and Mutagenesis of the Caspase Recruitment Domain (CARD) from Apaf-1. Cell Death & Differentiation, 6, 1125-1132.
[29] Chou, J.J., Matsuo, H., Duan, H. and Wagner, G. (1998) Solution Structure of the RAIDD CARD and Model for CARD/CARD Interaction in Caspase-2 and Caspase-9 Recruitment. Cell, 94, 171-180.
[30] Qin, H., Srinivasula, S.M., Wu, G., Fernandes-Alnemri, T., Alnemri, E.S. and Shi, Y. (1999) Structural Basis of Procaspase-9 Recruitment by the Apoptotic Protease-Activating Factor 1. Nature, 399, 549-557.
[31] Kumar, S. (1999) Mechanisms Mediating Caspase Activation in Cell Death. Cell Death & Differentiation, 6, 1060-1066.
[32] Liepinsh, E., Barbals, R., Dahl, E., Sharipo, A., Staub, E. and Otting, G. (2003) The Death-Domain Fold of the ASC PYRIN Domain, Presenting a Basis for PYRIN/PYRIN Recognition. Journal of Molecular Biology, 332, 1155-1163.
[33] Nam, Y.J., Mani, K., Ashton, A.W., Peng, C.F., Krishnamurthy, B., Hayakawa, Y., et al. (2004) Inhibition of Both the Extrinsic and Intrinsic Death Pathways through Nonhomotypic Death-Fold Interactions. Molecular Cell, 15, 901-912.
[34] Dioletis, E., Dingley, A.J. and Driscoll, P.C. (2013) Structural and Functional Characterization of the Recombinant Death Domain from Death-Associated Protein Kinase. PLoS ONE, 8, e70095.
[35] Ferrao, R. and Wu, H. (2012) Helical Assembly in the Death Domain (DD) Superfamily. Current Opinion in Structural Biology, 22, 241-247.
[36] Kay, W.H.T, Darwiche, R., Irawaty, W., Chong, M.M.W., Pennington, H.L. and Thomas, H.E. (2003) The Role of Cytokines as Effectors of Tissue Destruction in Autoimmunity Cytokines and Chemokines in Autoimmune Disease. Kluwer Academic/Plenum Publishers, Dordrecht, 73-86.
[37] Banner, D.W., D’Arcy, A., Janes, W., Gentz, R., Schoenfeld, H.J., Broger, C., et al. (1993) Crystal Structure of the Soluble Human 55 kd TNF Receptor-Human TNF Beta Complex: Implications for TNF Receptor Activation. Cell, 73, 431-445.
[38] Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H., et al. (1995) Cytotoxicity Dependent APO-1 (Fas/CD95)-Associated Proteins form a Death-Inducing Signaling Complex (DISC) with the Receptor. The EMBO Journal, 14, 5579-5588.
[39] Salvesen, G.S. (2002) Caspases and Apoptosis. Essays in Biochemistry, 38, 9-19.
[40] Thome, M., Hofmann, K., Burns, K., Martinon, F., Bodmer, J.L., Mattmann, C., et al. (1998) Identification of CARDIAK, a RIP-Like Kinase That Associates with Caspase-1. Current Biology, 8, 885-888.
[41] Druilhe, A., Srinivasula, S.M., Razmara, M., Ahmad, M. and Alnemri, E.S. (2001) Regulation of IL-1β Generation by Pseudo-ICE and ICEBERG, Two Dominant Negative Caspase Recruitment Domain Proteins. Cell Death & Differentiation, 8, 649-657.
[42] Zou, H., Henzel, W.J., Liu, X., Lutschg, A. and Wang, X. (1997) Apaf-1, a Human Protein Homologous to C. Elegans CED-4, Participates in Cytochrome c-Dependent Activation of Caspase-3. Cell, 90, 405-413.
[43] O’Neill, L.A., Dunne, A., Edjeback, M., Gray, P., Jefferies, C. and Wietek, C. (2003) Mal and MyD88: Adapter Proteins Involved in Signal Transduction by Toll-Like Receptors. Innate Immunity, 9, 55-59.
[44] Jadidi-Niaragh, F. and Mirshafiey, A. (2010) Histamine and Histamine Receptors in Pathogenesis and Treatment of Multiple Sclerosis. Neuropharmacology, 59, 180-189.
[45] Nicot, A. (2009) Gender and Sex Hormones in Multiple Sclerosis Pathology and Therapy. Frontiers in Bioscience, 14, 4477-4515.
[46] Neumann, H., Medana, I.M., Bauer, J. and Lassmann, H. (2002) Cytotoxic T Lymphocytes in Autoimmune and Degenerative CNS Diseases. Trends in Neurosciences, 25, 313-319.
[47] Kasper, L.H. and Shoemaker, J. (2010) Multiple Sclerosis Immunology: The Healthy Immune System vs the MS Immune System. Neurology, 74, 2-8.
[48] Friese, M.A. and Fugger, L. (2009) Pathogenic CD8+ T Cells in Multiple Sclerosis. Annals of Neurology, 66, 132-141.
[49] Bettelli, E., Oukka, M. and Kuchroo, V.K. (2007) TH-17 Cells in the Circle of Immunity and Autoimmunity. Nature Immunology, 8, 345-350.
[50] Batoulis, H., Addicks, K. and Kuerten, S. (2010) Emerging Concepts in Autoimmune Encephalomyelitis beyond the CD4/TH1 Paradigm. Annals of Anatomy—Anatomischer Anzeiger, 192, 179-193.
[51] Huang, W.X., Huang, M.P., Gomes, M.A. and Hillert, J. (2000) Apoptosis Mediators FasL and TRAIL Are Upregulated in Peripheral Blood Mononuclear Cells in MS. Neurology, 55, 928-934.
[52] Su-Yin, L. and Constantinescu, C.S. (2010) TNF-α: A Paradigm of Paradox and Complexity in Multiple Sclerosis and its Animal Models. The Open Autoimmunity Journal, 2, 160-170.
[53] Korn, T., Magnus, T. and Jung, S. (2005) Autoantigen Specific T Cells Inhibit Glutamate Uptake in Astrocytes by Decreasing Expression of Astrocytic Glutamate Transporter GLAST: A Mechanism Mediated by Tumor Necrosis Factor-Alpha. The FASEB Journal, 19, 1878-1880.
[54] Jurewicz, A., Matysiak, M., Tybor, K., Kilianek, L., Raine, C.S. and Selmaj, K. (2005) Tumor Necrosis Factor-Induced Death of Adult Human Oligodendrocytes Is Mediated by Apoptosis Inducing Factor. Brain, 128, 2675-2688.
[55] Pouly, S., Becher, B., Blain, M. and Antel, J.P. (2000) Interferon-Gamma Modulates Human Oligodendrocyte Susceptibility to Fas-Mediated Apoptosis. Journal of Neuropathology & Experimental Neurology, 59, 280-286.
[56] Aktas, O., Prozorovski, T. and Zipp, F. (2006) Death Ligands and Autoimmune Demyelination. Neuroscientist, 12, 305-316.
[57] Sun, J., Hilliard, B., Xu, L. and Chen, Y.H. (2005) Essential Roles of the Fas-Associated Death Domain in Autoimmune Encephalomyelitis. The Journal of Immunology, 175, 4783-4788.
[58] Schneider, P., Bodmer, J.L, Thome, M., Hofmann, K., Holler, N. and Tschopp, J. (1997) Characterization of Two Receptors for TRAIL. FEBS Letters, 416, 329-334.
[59] Dorr, J., Bechmann, I., Waiczies, S., Aktas, O., Walczak, H., Krammer, P.H., et al. (2002) Lack of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand but Presence of Its Receptors in the Human Brain. Journal of Neuroscience, 22, RC209 1 of 5.
[60] Matysiak, M., Jurewicz, A., Jaskolski, D. and Selmaj, K. (2002) TRAIL Induces Death of Human Oligodendrocytes Isolated from Adult Brain. Brain, 125, 2469-2480.
[61] Panitch, H.S., Hirsch, R.L., Schindler, J. and Johnson, K.P. (1987) Treatment of Multiple Sclerosis with Gamma Interferon: Exacerbations Associated with Activation of the Immune System. Neurology, 37, 1097-1102.
[62] Wosik, K., Antel, J., Kuhlmann, T., Bruck, W., Massie, B. and Nalbantoglu, J. (2003) Oligodendrocyte Injury in Multiple Sclerosis: A Role for p53. Journal of Neurochemistry, 85, 635-644.
[63] Huang, Y., Erdmann, N., Peng, H., Zhao, Y. and Zheng, J. (2005) The Role of TNF Related Apoptosis-Inducing Ligand in Neurodegenerative Diseases. Cellular Molecular Immunology, 2, 113-122.
[64] Hisahara, S., Araki, T., Sugiyama, F., Yagami, K., Suzuki, M., Abe, K., et al. (2000) Targeted Expression of Baculovirus p35 Caspase Inhibitor in Oligodendrocytes Protects Mice against Autoimmune Mediated Demyelination. The EMBO Journal, 19, 341-348.
[65] Hovelmeyer, N., Hao, Z., Kranidioti, K., Kassiotis, G., Buch, T., Frommer, F., et al. (2005) Apoptosis of Oligodendrocytes via Fas and TNF-R1 Is a Key Event in the Induction of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 175, 5875-5884.
[66] van Loo, G., De Lorenzi, R., Schmidt, H., Huth, M., Mildner, A., Schmidt-Supprian, M., et al. (2006) Inhibition of Transcription Factor NF-kB in the Central Nervous System Ameliorates Autoimmune Encephalomyelitis in Mice. Nature Immunology, 7, 954-961.
[67] Stancovski, I. and Baltimore, D. (1997) NF-kB Activation: The IkB Kinase Revealed? Cell, 91, 299-302.
[68] Liu, Z.G., Hsu, H., Goeddel, D.V. and Karin, M. (1996) Dissection of TNF Receptor 1 Effector Functions: JNK Activation Is Not Linked to Apoptosis While NF-kB Activation Prevents Cell Death. Cel1, 87, 565-576.
[69] Rai, N.K., Tripathi, K., Sharma, D. and Shukla, V.K. (2005) Apoptosis: A Basic Physiologic Process in Wound Healing. International Journal of Lower Extremity Wounds, 4, 138-144.
[70] Martinon, F. and Tschopp, J. (2004) Inflammatory Caspases: Linking an Intracellular Innate Immune System to Autoinflammatory Diseases. Cell, 117, 561-574.
[71] Sutton, C., Brereton, C., Keogh, B., Mills, K.H.G. and Lavelle, E.C. (2006) A Crucial Role for Interleukin (IL)-1 in the Induction of IL-17-Producing T Cells That Mediate Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 203, 1685-1691.
[72] Ferrari, C.C., Depino, A.M., Prada, F., Muraro, N. and Campbell, S. (2004) Reversible Demyelination, Blood-Brain Barrier Breakdown, and Pronounced Neutrophil Recruitment Induced by Chronic IL-1 Expression in the Brain. American Journal of Pathology, 165, 1827-1837.
[73] Hisahara, S., Yuan, J., Momoi, T., Okano, I.H. and Miura, M. (2001) Caspase-11 Mediates Oligodendrocyte Cell Death and Pathogenesis of Autoimmune-Mediated Demyelination. Journal of Experimental Medicine, 193, 111-122.
[74] D’Souza, S.D., Bonetti, B., Balasingam, V., Cashman, N.R., Barker, P.A., Troutt, A.B., et al. (1996) Multiple Sclerosis: Fas Signaling in Oligodendrocyte Cell Death. Journal of Experimental Medicine, 184, 2361-2370.
[75] Li, W.Y., Maeda, Y., Ming, X., Cook, S., Chapin, J., Husar, W. and Dowling, P. (2002) Apoptotic Death Following Fas Activation in Human Oligodendrocyte Hybrid Cultures. Journal of Neuroscience Research, 69, 189-196.
[76] Lassus, P., Opitz-Araya, X. and Lazebnik, Y. (2002) Requirement for Caspase-2 in Stress-Induced Apoptosis before Mitochondrial Permeabilization. Science, 297, 1352-1354.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.