Parameter Identification and Controller Design for the Velocity Loop in Motion Control Systems
Reimund Neugebauer, Stefan Hofmann, Arvid Hellmich, Holger Schlegel
.
DOI: 10.4236/ica.2011.23030   PDF    HTML     5,540 Downloads   8,745 Views   Citations

Abstract

Today the controller commissioning of industrial used servo drives is usually realized in the frequency domain with the open-loop frequency response. In contrast to that the cascaded system of position loop, velocity loop and current loop, which is standard in industrial motion controllers, is described in literature by using parametric models. Several tuning rules in the time domain are applicable on the basis of these parametric descriptions. In order to benefit from the variety of tuning rules an identification method in the time domain is required. The paper presents a method for the identification of plant parameters in the time domain. The approach is based on the auto relay feedback experiment by Åström/ Hägglund and a modified technique of gradual pole compensation. The paper presents the theoretical description as well as the implementtation as an automatic application in the motion control system SIMOTION. The identification results as well as the achievable performance on a test rig with a PI velocity controller will be presented.

Share and Cite:

R. Neugebauer, S. Hofmann, A. Hellmich and H. Schlegel, "Parameter Identification and Controller Design for the Velocity Loop in Motion Control Systems," Intelligent Control and Automation, Vol. 2 No. 3, 2011, pp. 251-257. doi: 10.4236/ica.2011.23030.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. Schuette, “Automatisierte Reglerinbetriebnahme für elektrische Antriebe mit schwingungsf?higer Mechanik,” Dissertation Thesis, Shaker Verlag, 2003.
[2] D. Schroeder, “Elektrische Antriebe―Regelung von Antriebssystemen,” Springer, Berlin-Heidelberg, 2001.
[3] O. Zirn, “Machine Tool Analysis―Modelling, Simula- tion and Control of Machine Tool Manipulators,” Habilitation Thesis, ETH Zuerich, 2008.
[4] H. Gross, J. Hamann and G. Wieg?rtner, “Elektrische Vorschubantriebe in der Automatisierungstechnik,” Publicis Corporate Publishing, Erlangen, 2006.
[5] R. Neugebauer, et al., “Ueberwachung und Bewertung von Antriebsregelungen bei Verzicht auf zus?tzliche Sensorik,” Proceedings of VDI-Congress Automation, Baden-Baden, 2010, pp. 117- 120.
[6] K. J. ?str?m and T. H?gglund, “Advanced PID Control,” International Society of Automation, New York, 2006.
[7] K. Reinisch, “Analyse und Synthese kontinuierlicher Steuerungs-und Regelungssysteme,” Verlag Technik, Berlin, 1996.
[8] M. A. Johnson and M. H. Moradi, “PID Control―New Identification and Design Methods,” Springer, Berlin-Heidelberg, 2005.
[9] S. Hofmann, A. Hellmich and H. Schlegel, “Ein Beitrag zur Identifikation Parametrischer Modelle zur Inbetriebnahme von Servoantrieben,” Proceedings of SPS/IPC/ DRIVES, VDE Verlag Berlin-Offenbach, 2009, pp. 515-519.
[10] A. V. Oppenheim and R. W. Schafer, “Zeitdiskrete Signalverarbeitung,” Oldenbourg, Munich, 1999.
[11] A. O’Dwyer, “Handbook of PI and PID Controller Tuning Rules,” Imperial College Press, London, 2006.
[12] R. Neugebauer, et al, “Non-Invasive Parameter Identification by Using the Least Squares Method,” Archive of Mechanical Engineering, Vol. 58, No. 2, 2011, pp. 185-194.
[13] H. Burkhardt, “Applikation von Algorithmen zur Bestimmung von Massentr?gheitsmomenten im Umfeld Industrieller Bewegungssteuerungen,” Diploma Thesis, Chemnitz University of Technology, 2010.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.