Finite Element Wear Behavior Modeling of Al/Al2SiO5/C Chilled Hybrid Metal Matrix Composites (CHMMCs)
Joel Hemanth
DOI: 10.4236/msa.2011.27118   PDF   HTML     6,156 Downloads   10,433 Views   Citations


This paper describes research on aluminum based metal matrix hybrid composites reinforced with kaolinite (Al2SiO5) and carbon (C) particulates cast using high rate heat transfer technique during solidification by employing metallic, non-metallic and cryogenic end chills. The effect of reinforcement and chilling on strength, hardness and wear behavior are discussed in this paper. It is discovered that cryogenic chilled MMCs with Al2SiO5-9 vol.%/C-3 vol.% dispersoid content proved to be the best in enhancing the mechanical and wear properties. A physically based Finite element (FE) model for the abrasive wear of the hybrid composite developed is based on the mechanisms associated with sliding wear of ductile aluminum matrix of the composite containing hard Al2SiO5 and soft carbon (dry lubricant) reinforcement particles. Finally the results reveal that there is a good agreement that exists between the simulated (FE) values and those of the experimental values, proving the suitability of the boundary conditions.

Share and Cite:

J. Hemanth, "Finite Element Wear Behavior Modeling of Al/Al2SiO5/C Chilled Hybrid Metal Matrix Composites (CHMMCs)," Materials Sciences and Applications, Vol. 2 No. 7, 2011, pp. 878-890. doi: 10.4236/msa.2011.27118.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. C. Yuen and W. B. Lee, “Hot bonding Al Matrix Composite with Different Fraction of Alumina,” Material Science, Vol. 30, 1995, pp. 843-849. doi:10.1007/BF01178415
[2] H. C. Yuen, B. Ralph and W. B. Lee, “Novel Preparation for an Aluminum-Alumina MMC by a Hot Roll Bonding Process,” Scripta Metallurgica et Materialia, Vol. 29, 1993, pp. 695-670. doi:10.1016/0956-716X(93)90421-N
[3] B. Ralph, H. C. Yuen and W. B. Lee, “The Processing of MMCs: An Overview,” Materials Processing Technology, Vol. 63, 1997, pp. 1-8. doi:10.1016/S0924-0136(96)02645-3
[4] Z. G. Wei, C. Y. Tang and W. B. Lee, “Design and Fabrication of Intelligent Composites Based on Shape,” Materials Processing Technology, Vol. 63, 1997, pp. 68-75. doi:10.1016/S0924-0136(96)00041-6
[5] Y. P. Rao and W. B. Lee, “Processing a Particulate MMC by Roll Bonding Method, Discussion Meeting on Inorganic Matrix Composites,” Indian Institute of Science, Bangalore, India, No. 3, 1995, pp. 8-18.
[6] K. Yeow, “Transaction Behavior of Unidirectional Ribbon Reinforced Metal Glass Epoxy Laminates,” Composite Materials, Vol. 14, 1980, pp. 132-139. doi:10.1177/002199838001400110
[7] B. D. Agarwal and J. M. Lifshitz, “Elastic-Plastic Finite Element Analysis of Short Fiber Composites,” Fiber Science and Technology, Vol. 7, 1974, pp. 45-53. doi:10.1016/0015-0568(74)90005-0
[8] T. G. Neigh and D. J. Chellman, “Modulus Measurements in Discontinuous Reinforced Al Composites,” Scripta Metallurgica, Vol. 18, 1984, pp. 925-931. doi:10.1016/0036-9748(84)90262-X
[9] A. P. Divecha, S. G. Fishman and S. D. Karmarkar, “Silicon Carbide Reinforced Al: A Formable Composite,” Journal of Metals, Vol. 12, 1981, pp. 12-17.
[10] D. L. McDaniels, “Analysis of Stress-Strain, Fracture and Ductility Behavior of Al MMCs Containing Discontinuous Silicon Carbide Reinforcement,” Metallurgical Transactions A, Vol. 16A, 1985, pp. 1105-1113. doi:10.1007/BF02811679
[11] D. R. Williams and M. E. Fine, “Quantitative Determination of Fatigue Microcrack Growth in SiC Whisker Reinforced 2124 Al Alloy Composites,” Proceedings of ICCM-V, San Diego, CA, AIME, TMS, Vol. 29, 1958, pp. 639-645.
[12] J. Hemanth, “Cryo Effect during Solidification on the Tribological Behavior of Al-Alloy/Glass (SiO2) MMCs,” Journal of Composite Materials, Sage publications, Vol. 43, 2009, pp. 675-688.
[13] J. Hemanth, “Tribological Behavior of Cryogenically Treated Al-12%Si Alloy/B4C Composites,” Wear, Elsevier Science, Vol. 258, 2005, pp. 1732-1745. doi:10.1016/j.wear.2004.12.009
[14] J. Hemanth, “Cryogenic Effects during Solidification on the Wear Behavior of Al Alloy/Glass MMCs,” Journal of Composite Materials Part A, Vol. 38, 2007, pp. 1395- 1402.
[15] J. Hemanth, “Development and Property Evaluation of Al-Alloy Reinforced with Nano-ZrO2 Metal Matrix Composites (NMMCs),” Journal of Materials Science and Engineering A, Vol. 507, 2009, pp. 110-113. doi:10.1016/j.msea.2008.11.039
[16] R. G. Schierding and O. D. Deex, “Factors Influencing the Properties of Whisker-Metal Composites,” Composite Materials, Vol. 3, 1969, pp. 618-625.
[17] T. T. Long, T. Nishimura and T. Aisaka, “Mechanical Properties and Wear Resistance of 6061 Al Alloy Reinforced with Hybrid Fibers and Whiskers,” Transactions of Japan Institute of Metals, Vol. 29, 1988, pp. 920-928.
[18] R. J. Arsenault, “The Strengthening of Al Alloy 6061 by Fiber and Platelet SiC,” Materials Science and Engineering, Vol. 64, 1984, pp. 171-178. doi:10.1016/0025-5416(84)90101-0
[19] S. V. Nair, J. K. Tien and R. C. Bates, “SiC Reinforced Al MMCs” Institute of Metals, Vol. 30, 1985, pp. 275- 283.
[20] J. Hemanth, “Quartz (SiO2p) Reinforced Chilled Metal Matrix Composites (CMMCs) for Automotive Applications,” Materials and Design, Elsevier Science, Vol. 30, 2009, pp. 323-329.
[21] J. Hemanth, “Development and Property Evaluation of Al-Alloy Reinforced with Nano-ZrO2 Metal Matrix Composites for Automotive Applications,” SAE International world congress, Paper No. 2009-01-0218, Detroit, Michigan, USA, 2009.
[22] A. Razaghian, D. Yu and T. Chandra, “Fracture Behavior of a SiC Particle Reinforced Al Alloy at High Temperature,” Composites Science and Technology, Vol. 58, 1998, pp. 293-298. doi:10.1016/S0266-3538(97)00130-9
[23] S. Q. Wu, H. Z. Wang and S. C. Tjong, “Wear Behavior Al Based Composites Reinforced with Ceramic Particles,” Composites Science and Technology, Vol. 56, 1996,
[24] pp. 1261-1268. doi:10.1016/S0266-3538(96)00085-1
[25] S. C. Tjong, S. Q. Wu and H. C. Liao, “Wear Behavior of Al-12%Si Alloy Reinforced with a Low Volume of SiC Particles,” Composites Science and Technology, Vol. 57, 1997, pp. 1151-1158
[26] C. M. Friend, “The Effect of Alumina Fiber Array on the Age Hardening Characteristics of and Al/Mg/Si Alloy,” Materials Science, Vol. 22, 1987, pp. 3005-3012. doi:10.1007/BF01086505
[27] J. M. Thompson, “A Proposal for the Wear Calculation,” Department of Mechanical engineering, MIT, 2007, pp. 45-57.
[28] P. Podra and S. Anderson, “Simulating Sliding Wear with Finite Element Method,” Tribology International, Vol. 32, 1999, pp. 71-81. doi:10.1016/S0301-679X(99)00012-2
[29] G. E. Lee, C. K. H. Dharan and R. O. Ritchie, “A physically Based Abrasive Wear Model for Composite Materials,” Wear, Vol. 252, 2002, pp. 322-331. doi:10.1016/S0043-1648(01)00896-1
[30] K. Elleuch and S. Fouvry, “Experimental and Modeling Aspects of Abrasive Wear of a A357 Aluminum Alloy under Gross Slip Fretting Conditions,” Wear, Vol. 258, 2005, pp. 40-49. doi:10.1016/j.wear.2004.04.010
[31] J. Hemanth, “Wear Characteristics of Sub Zero Chilled Cast Iron,” Wear, Vol. 192, 1996, pp. 134-143. doi:10.1016/0043-1648(95)06781-7
[32] J. Hemanth, “Effect of Cooling Rate on the Dendrite Arm Spacing and Ultimate Tensile Strength of Cast Iron,” Material Science, Vol. 33, 1998, pp. 23-35. doi:10.1023/A:1004321007806
[33] J. Hemanth, “Effect of High Rate of Heat Transfer during Solidification of Alloyed Cast Iron Using Water-Cooled and Sub-Zero Chills on Mechanical Behavior,” Materials and Design Vol. 24, 2003, pp. 37-45. doi:10.1016/S0261-3069(02)00086-9
[34] J. F. Archard and W. Hirst, “The Wear of Metals under Un-Lubricated Conditions,” Proceedings of the Royal Society-A, Mathematical, Physical and Engineering Sciences, Vol. 236, 1956, pp. 397-410. doi:10.1098/rspa.1956.0144
[35] J. J. Lewandowski, C. Liu and W. H. Hunt, “Microstructure Effects on the Fracture Micro-Mechanisms in Al MMCs in Processing and Preparation for Powder Metallurgy Composites,” P. Kumar and A. Ritter, Eds., TMS, Vol. 12, 1988, pp. 117-128.
[36] M. Taya and R. J. Arsenault, “Heat Treating of Composite Materials,” Composite materials, Pergamon press, Vol. 35, 1989, pp. 56-67.
[37] B. Ralph, H. C. Yuen and W. B. Lee, “Mechanical Properties and Microstructure of Composite Materials,” Materials Processing Technology, Vol.63, 1997, pp. 9-18.
[38] V. G. Gorbounov and V. D. Parshin, “Sliding Wear Characteristics of Al/SiO2 Composites,” Russian Casting Production, Vol. 35, 1974, pp. 348-356
[39] T. G. Neigh, “Wear Regimes and Transition in Al2O3 MMCs,” Metallurgical and Materials Transactions, Vol. 15, 1984, pp. 139-146.
[40] P. K. Ghosh and S. K. Ray, Wear Behavior of Al-12%Si Alloy Reinforced with Low Volume Fraction of SiO2 Particles,” Materials Science, Vol. 21, 1986, pp. 1167- 1175.
[41] E. Rabinowicz, “Friction Wear of Materials,” John Wiley and Sons, New York, Vol. 32, 1965, pp. 168-177.
[42] J. F. Archard, “Properties of Composite Materials” Journal of Applied Physics, Vol. 24, 1953, pp. 981-988. doi:10.1063/1.1721448
[43] A. G. Wang and I. M. Hutchings, “Wear of Alumina-Fiber Aluminum Composites,” Materials Science and Technology, Vol. 5, 1989, pp. 71-84.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.