FP-LMTO Investigation of the Structural and Electronic Properties of CuxAg1–xI Alloys

Abstract

The structural and electronic properties of the ternary CuxAg1–xI, alloy have been calculated, using the full-potential linear muffin-tin-orbital (FP-LMTO) method based on density functional theory, within both the local density approximation and the generalized gradient approximation (GGA). The equilibrium lattice constants and the bulk modulus are compared with previous theoretical calculations. The concentration dependence of the electronic band structure and the direct-indirect band gaps is also investigated. Using the approach of Zunger and co-workers the microscopic origins of the gap bowing were also explained.

Share and Cite:

M. Ameri, N. Bouzouira, M. Doui-Aici, R. Khenata, A. Yakoubi and M. Maachou, "FP-LMTO Investigation of the Structural and Electronic Properties of CuxAg1–xI Alloys," Materials Sciences and Applications, Vol. 2 No. 7, 2011, pp. 748-756. doi: 10.4236/msa.2011.27103.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. K. Ivanov-Shits and I. V. Murin “Ionika Tverdogo tela,” Izd-vo SPbGU, S.-Peterburg, 2000.
[2] J. G. P. Binner, G. Dimitrakis, D. M. Price1, M. Reading and B. Vaidhyanathan, “Hysterisis in the Phase Transition in Silver Iodide,” Journal of Thermal Analysis and Calorimetry, Vol. 84, No. 2, 2006, pp. 409-412. doi:10.1007/s10973-005-7154-1
[3] F. Wells, “Structural Inorganic Chemistry,” Oxford University Press, Oxford, 1984.
[4] J. N?lting and Ber. Bunsenges, Physik. Chem., Vol. 68. No. 10, 1964, p. 932.
[5] Kusakabe M., Shirakawa Y., Tamaki S., Ito Y, “The Transport Properties of Cations in the Superionic Phase of AgxCu1-xI,” Journal of the Physical Society of Japan, Vol. 64, No. 01, 1995, pp. 170-176.
[6] Goldmann, “Band Structure and Optical Properties of Tetrahedrally Coordinated Cu and Ag-Halides,” Physica Status Solidi (B), Vol. 81, No 1, 1977, pp. 9-47.
[7] W. Sekkal, A. Laref and H. Aourag, A. Zaoui and M. Certier, “The miscibility of CuxAg1?xI Using a Tersoff Potential,” Superlattice and Microstructures, Vol. 28, No. 1, 2000, pp. 55-66. doi:10.1006/spmi.1999.0782
[8] B. Jaros?aw and R. Jaros?aw, “Cation Diffusion Coefficients in CuAgI via Molecular Dynamics Simulations,” Solid State Ionics, Vol. 157, No. 1-4, 2003, pp. 227-232. doi:10.1016/S0167-2738(02)00214-X
[9] Zunger, S.-H. Wei, L. G. Ferreira and J. E. Bernard, “Special Quasirandom Structures,” Physical Review Letters, Vol. 65, No. 3, 1990, pp. 353-356. doi:10.1103/PhysRevLett.65.353
[10] S. Savrasov and D. Savrasov, “Full-Potential Linear-muffin-Tin-Orbital Method for Calculating Total Energies and Forces,” Physical Review B, Vol. 46, No. 19, 1992, pp. 12181-12195. doi:10.1103/PhysRevB.46.12181
[11] S. Y. Savrasov, “Linear-Response Theory and Lattice Dynamics: A Muffin-Tin-Orbital Approach,” Physical Review B, Vol. 54, No. 23, 1996, pp. 16470-16486. doi:10.1103/PhysRevB.54.16470
[12] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review, Vol. 136, No. 3B, 1964, pp. B864-B871.
[13] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review A, Vol. 140 , No. 4A, 1965, pp. A1133-A1138. doi:10.1103/PhysRev.140.A1133
[14] S. Y. Savrasov, “Program LMTART for electronic structure calculations,” Zeitschrift für Kristallogr, Vol. 220, 2005, pp. 555-557.
[15] J.P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy,” Physical Review A, Vol. 45, No. 13, 1992, pp. 13244-13249. doi:10.1103/PhysRevB.45.13244
[16] J.P. Perdew, S. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, No.18, 1996, pp. 3865-3868. doi:10.1103/PhysRevLett.77.3865
[17] P. Blochl, O. Jepsen and O. K. Andersen, “Improved Tetrahedron Method for Brillouin-Zone Integrations,” Physical Review B, Vol. 49, No. 23, 1994, pp. 16223-16233. doi:10.1103/PhysRevB.49.16223
[18] F. D. Murnaghan, “The Compressibility of Media under Extreme Pressures,” Proceedings of the National Academy of Sciences USA, Vol. 30, 1944, pp. 244-247. doi:10.1073/pnas.30.9.244
[19] L. Vegard, “Formation of Mixed Crystals by Solid-Phase Contact,” Zeitschrift für Phys, Vol. 5, No. 5, 1921, pp. 393-395.
[20] B. Jobst, D. Hommel, U. Lunz, T. Gerharda and G. Landwehr, “E0 Band-Gap Energy and Lattice Constant of Ternary Zn1?xMgxSe as Functions of Composition,” Applied Physics Letters, Vol. 69, No. 1, 1996, pp. 97-100. doi:10.1063/1.118132
[21] F. El Haj Hassan and H. Akdarzadeh, “First-Principles Investigation of BNxP1-x, BNxAs1-x and BPxAs1-x Ternary Alloys,” Materials Science and Engineering, Vol. 121, 2005, pp. 171-178.
[22] B. Amrani, F. El Haj Hassan, R. Khenata and H. Akbarzadeh, “Theoretical Study of CuxAg1-xI Alloys,” Journal of Physics and Chemistry of Solids, Vol. 70, No. 7, 2009, pp. 1055-1061. doi:10.1016/j.jpcs.2009.05.003
[23] S. N. Rashkeev and W. R. L. Lambrecht, “Second-Harmonic Generation of I-III-VI2 Chalcopyrite Semiconductors: Effects of Chemical Substitutions,” Physical Review B, Vol. 63, No. 16, 2001, pp. 165212-165224. doi:10.1103/PhysRevB.63.165212
[24] G. Onida, L. Reining, and A. Rubio, “Electronic Excitations: Density-Functional versus Many-Body Green’s-Function Approaches,” Reviews of Modern Physics, Vol. 74, 2002, pp. 601-659. doi:10.1103/RevModPhys.74.601
[25] J.E. Bernard and A. Zunger, “Optical Bowing in Zinc Chalcogenide Semiconductor Alloys,” Physical Review B, Vol. 34 , No. 8, 1986, pp. 5992-5995. doi:10.1103/PhysRevB.34.5992
[26] H. Baaziz, Z. Charifi, F. El Haj Hassan, S. J. Hashemifar, and H. Akbarzadeh, “FP-LAPW Investigations of Zn1–xBexS, Zn1–xBexSe and Zn1–xBexTe Ternary Alloys,” Physica Status Solidi (B), Vol. 243, No. 6, 2006, pp. 1296-1305.
[27] A. Mokhtari and H. Akbarzadeh, “Ab Initio Calculations of the Electronic and Structural Properties of Beryllium-, Magnesium- and Calcium-Nitrides,” Physica B, Vol. 337, 2003, pp. 122-129. doi:10.1016/S0921-4526(03)00387-9
[28] A. Bouhemadou, R. Khenata, F. Zegrar, M. Sahnoun, H. Baltache and A. H. Reshak, “Ab Initio Study of Structural, Electronic, Elastic and High Pressure Properties of Barium Chalcogenides,” Computational Materials Science, Vol. 38, No. 2, 2006, pp. 263-270. doi:10.1016/j.commatsci.2006.03.001
[29] S. Hull and D.A. Keen, “Pressure-Induced Phase Transitions in AgCl, AgBr, and AgI,” Physical Review B, Vol. 59, No. 2, 1999, pp. 750-761. doi:10.1103/PhysRevB.59.750
[30] S. Hull and D.A. Keen, “High-Pressure Polymorphism of the Copper(I) Halides: A Neutron-Diffraction Study to ~10 GPa,” Physical Review B, Vol. 50, No. 9, 1994, pp. 5868-5885. doi:10.1103/PhysRevB.50.5868
[31] L.A. Palomino-Rojas, M. Lo′pez-Fuentes, G. H. Cocoletzi, G. Murrieta, R. de Coss and N. Takeuchi, “Density Functional Study of the Structural Properties of Silver Halides: LDA vs GGA Calculations,” Solid State Sciences, Vol. 10, No. 9, pp. 1228-1235. doi:10.1016/j.solidstatesciences.2007.11.022
[32] T. S?hnel, H. Hermann and P. Schwerdtfeger, “Solid State Density Functional Calculations for the Group 11 Monohalides,” Journal of Physical Chemistry B, Vol. 109, No. 1, 2005, pp. 526-531.
[33] T. Ida, M. Mizuno, K. Endo, M. Suhara, K. Nishidate, K. Nishikawa, “Dynamical Structure of Alpha-Ag_{0.99} Cu_{0.01}I Crystal by ^{63}Cu NMR Chemical Shift, Spin-Lattice Relaxation Time and Molecular Dyanmics Simulation,” Journal of Physics and Chemistry of Solids, Vol. 63, 2002, pp. 249-256. doi:10.1016/S0022-3697(01)00137-8
[34] B. Amrani, T. Benmessabih, M. Tahiri, I. Chiboub, S. Hiadsi and F. Hamdache, “First Principles Study of Structural, Elastic, Electronic and Optical Properties of CuCl, CuBr and CuI Compounds under Hydrostatic Pressure,” Physica B, Vol. 381, 2006, pp. 179-186. doi:10.1016/j.physb.2006.01.447
[35] F. El Haj Hassan, A. Zaoui and W. Sekkal, “Structural Properties of Copper Halides,” Materials Science and Engineering: B, Vol. 87, 2001, pp. 40-47. doi:10.1016/S0921-5107(01)00687-0
[36] R. C. Hanson, T. A. Fjeldly and H. D. Hochheimer, “Raman Scattering from Five Phases of Silver Iodide,” Physica Status Solidi (A), Vol. 70, No. 2, 1975, pp. 567-576. doi:10.1002/pssb.2220700216
[37] M. Hofmann, S. Hull and D. A. Keen, “High-Pressure Phase of Copper(I) Iodide,” Physical Review B, Vol. 51, No. 17, 1995, pp. 12022-12025. doi:10.1103/PhysRevB.51.12022
[38] G. S. Nunes, P.B. Allen, J. L. Martin, “Pressure Induced Phase Transitions in Silver Halides,” Physical Review B, Vol. 57, No. 9, 1998, pp. 5098-5105. doi:10.1103/PhysRevB.57.5098
[39] W. Sekkal, A. Zaoui, A. Laref, M. Certier and H. Aourag, “Molecular Dynamics Simulation of CuI using a Three-Body Potential,” Journal of Physics: Condensed Matter, Vol. 12, No. 28, 2000, p. 6173. doi:10.1088/0953-8984/12/28/313
[40] R. H. Victora, “Calculated Electronic Structure of Silver Halide Crystals,” Physical Review B, Vol. 56, No. 8, 1997, pp. 4417-4421.
[41] V. P. Krüger and J. Pollmann, “Ab Initio Electronic Structure of Silver Halides Calculated with Self-Interaction and Relaxation-Corrected Pseudopotentials,” Physical Review B, Vol. 58, No. 7, 1998, pp. 3865-3869. doi:10.1103/PhysRevB.58.3865
[42] M. Ferhat, A. Zaoui, M. Certier, J. P. Dufour and B. Khelifa, “Electronic Structure of the Copper Halides CuCl, CuBr and Cul,” Materials Science and Engineering, Vol. 39, 1996, pp. 95-100. doi:10.1016/0921-5107(95)01518-3
[43] Zakharov, A. Rubio, X. Blase, M. L. Cohen and S. G. Louie, “Quasiparticle Band Structures of Six II-VI Compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe,” Physical Review B, Vol. 50, No. 15, 1994, pp. 10780-10787. doi:10.1103/PhysRevB.50.10780

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.