Share This Article:

Effect of Grinding Time of Mill Scale on the Physicochemical Properties of Produced Briquettes and Its Reduction via Hydrogen

Abstract PP. 1-10
DOI: 10.4236/oalib.1101016    1,515 Downloads   1,885 Views   Citations

ABSTRACT

This study deals with the grinding of mill scale in a laboratory ball mill for different milling time then briquetted by using 2% molasses as a binder and investigates the effect of grinding of mill scale for different time on the physicochemical properties and the reduction degree of the mill scale briquettes via hydrogen. Diffusion process control equation was applied and the energy of activation was calculated = 28.33 kJ/mole.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

El-Hussiny, N. , Abdul-Wahab, H. , Ali, M. , Omar, A. , Shalabi, M. and Moharm, M. (2014) Effect of Grinding Time of Mill Scale on the Physicochemical Properties of Produced Briquettes and Its Reduction via Hydrogen. Open Access Library Journal, 1, 1-10. doi: 10.4236/oalib.1101016.

References

[1] El-Hussiny, N.A., Abdel-Khalek, N.A., Morsi, M.B., Mohamed, O.A., Shalabi, M.E.H. and Baeka, A.M. (1996) Influence of Water Amount Added on the Sintering Process of Egyptian Iron Ore. Gornictwo, 231, 93-115.
[2] Jander, W. and Anorg, Z. (1927) Kinetic Model for Solid-State Reactions. Zeitschrift für Anorganische und Allgemeine Chemie, 163, 1-30.
[3] Bienvenu, Y. and Rodrigues, S. (2007) Manufacture of Metal Powders from Pulverulent Waste. ENSMP, Centre des matériaux, CNRS UMR 7633, France.
[4] Benchiheub, O., Mechachti, S., Serrai, S. and Khalifa, M.G. (2010) Elaboration of Iron Powder from Mill Scale. Journal of Materials and Environmental Science, 1, 267-276.
[5] Camci, L., Aydin, S. and Arslan, C. (2002) Reduction of Iron Oxides in Solid Wastes Generated by Steelworks. Turkish Journal of Engineering and Environmental Sciences, 26, 37-44.
[6] Martín, M.I., López, F.A., Rabanal, M.E. and Torralba, J.M. (2010) Production of Sponge Iron Powder by Reduction of a By-Product of the Steelmaking Industry. PM2010 World Congress—Water Atomized Powders, v. 1.
[7] Park, J.-W., Ahn, J.-C., Song, H., Park, K., Shin, H. and Ahn, J.-S. (2002) Reduction Characteristics of Oily Hot Rolling Mill Sludge by Direct Reduced Iron Method. Resources, Conservation and Recycling, 34, 129-140.
http://dx.doi.org/10.1016/S0921-3449(01)00098-2
[8] Balaz, P., Takacs, L., Luxova, M., Godocikova, E. and Ficeriova, J. (2004) Mechanochemical Processing of Sulphidic Minerals. International Journal of Mineral Processing, 245, S365-S371.
http://dx.doi.org/10.1016/j.minpro.2004.07.007
[9] Hu, H., Chen, Q., Yin, Z. and Zhang, P. (2003) Thermal Behaviors of Mechanically Activated Pyrites by Thermogravimetry (TG). Thermochimica Acta, 398, 233-240.
http://dx.doi.org/10.1016/S0040-6031(02)00390-8
[10] Godocikova, E., Balaz, P. and Boldizarova, E. (2002) Structural and Temperature Sensitivity of the Chloride Leaching of Copper, Lead and Zinc from a Mechanically Activated Complex Sulphide. Hydrometallurgy, 65, 83-93.
http://dx.doi.org/10.1016/S0304-386X(02)00094-4
[11] Maurice, D. and Hawk, J.A. (1999) Ferric Chloride Leaching of a Mechanically Activated Pentlandite-Chalcopyrite Concentrate. Hydrometallurgy, 52, 289-312.
http://dx.doi.org/10.1016/S0304-386X(99)00021-3
[12] Maurice, D. and Hawk, J.A. (1999) Simultaneous Autogenous Milling and Ferric Chloride Leaching of Chalcopyrite. Hydrometallurgy, 51, 371-377.
http://dx.doi.org/10.1016/S0304-386X(98)00088-7
[13] Ficeriová, J., Baláz, P. and Boldizárová, E. (2005) Combined Mechanochemical and Thiosulphate Leaching of Silver from a Complex Sulphide Concentrate. International Journal of Mineral Processing, 76, 260-265.
http://dx.doi.org/10.1016/j.minpro.2005.01.005
[14] Baláz, P., Boldizárová, E., Achimovicová, M. and Kammel, R. (2000) Leaching and Dissolution of a Pentlandite Concentrate Pretreated by Mechanical Activation. Hydrometallurgy, 57, 85-96.
http://dx.doi.org/10.1016/S0304-386X(00)00102-X
[15] Welham, N.J. (2001) Mechanochemical Processing of Enargite (Cu3AsS4). Hydrometallurgy, 62, 165-173.
http://dx.doi.org/10.1016/S0304-386X(01)00195-5
[16] Baláz, P., Ficeriová, J. and Leon, C.V. (2003) Silver Leaching from a Mechanochemically Pretreated Complex Sulfide Concentrate. Hydrometallurgy, 70, 113-119.
http://dx.doi.org/10.1016/S0304-386X(03)00051-3
[17] Baláz, P. (2003) Mechanical Activation in Hydrometallurgy. International Journal of Mineral Processing, 72, 341-354.
http://dx.doi.org/10.1016/S0301-7516(03)00109-1
[18] Boldyrev, V.V. and Tkácová, K. (2000) Mechanochemistry of Solids: Past, Present, and Prospects. Journal of Materials Synthesis and Processing, 8, 121-132.
http://dx.doi.org/10.1023/A:1011347706721
[19] Steinike, U. and Tkácová, K. (2000) Mechanochemistry of Solids—Real Structure and Reactivity. Journal of Materials Synthesis and Processing, 8, 197-203.
http://dx.doi.org/10.1023/A:1011364110355
[20] Karagedov, G.R. and Lyakhov, N.Z. (2003) Mechanochemical Grinding of Inorganic Oxides. KONA Powder and Particle Journal, 21, 76-86.
http://dx.doi.org/10.14356/kona.2003011
[21] Welham, N.J. and Llewellyn, D.J. (1998) Mechanical Enhancement of the Dissolution of Ilmenite. Minerals Engineering, 11, 827-841.
http://dx.doi.org/10.1016/S0892-6875(98)00070-3
[22] Baláz, P., Huhn, H.J., Tkácová, K. and Heegn, H. (1988) Laugungsverhalten und physico-chemische Eigenschaften von in unterschiedlichen Mullen vorbehandeltemchalkopyrite. Erzmetall, 41, 325-331.
[23] Senna, M. (1983) Criteria of Activation of Powdery Materials by a Preliminary Mechanical Treatment. KONA Powder and Particle Journal, 1, 48-52.
http://dx.doi.org/10.14356/kona.1983009
[24] Mayer, K. (1980) Pelletization of Iron Ores. Springer-Verlag, Berlin, Heidelberg.
[25] El-Hussiny N.A. and Shalabi, M.E.H. (2011) A Self-Reduced Intermediate Product from Iron and Steel Plant Waste Material Using a Briquetting Process. Powder Technology, 205, 217-223.
http://dx.doi.org/10.1016/j.powtec.2010.09.017
[26] Mohamed, F.M., Ahmed, Y.M.Z. and Shalabi, M.E.H. (2004) Environmental Issues and Waste Management in Energy and Mineral Production SWEMP. 567-573.
[27] Mangena, S.J. and Cann, V.M. (2007) Binderless Briquetting of Some Selected South African Prime Coking, Blend Coking and Weathered Bituminous Coals and the Effect of Coal Properties on Binderless Briquetting. International Journal of Coal Geology, 71, 303-312.
http://dx.doi.org/10.1016/j.coal.2006.11.001
[28] Ingles, O.G. (1962) Microstructure in Binderless Briquetting. In: Knepper, W.A., Ed., Agglomeration, Interscience Publishers, New York, 29-53.
[29] Sayed, S.A., Khalifa, M.G., El-Faramawy, E.S.R. and Shalabi, M.E.H. (2001) Reductions Kinetic of El-Baharia Iron Ore in a Static Bed. Gospodarka Surowcami Mineranymi, 17, 241-245.
[30] Shalabi, M.E.H., Mohamed, O.A., Abdel-Khalek, N.A. and El-Hussiny, N.A. (1997) The Influence of Reduced Sponge Iron Addition on the Quality of Produced Iron Ore Sinter. Proceeding of the XXIMPC, Aachen, 21-26 September 1997, 362-376.
[31] El-Hussiny, N.A., Abdel-Khalek, N.A., Morsi, M.B., Mohamed, O.A., Shalabi, M.E.H. and Baeka, A.M. (1996) Influence of Water Amount Added on the Sintering Process of Egyptian Iron Ore. Gornictwo, 231, 93-115.
[32] Jander, W. and Anorg, Z. (1927) Kinetic Model for Solid-State Reactions. Zeitschrift für Anorganische und Allgemeine Chemie, 163, 1-30.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.