Weighted Voting Analysis of DNA Microarray for Gene Selection and Gene Expression Analysis of Two Types of Rats Treated with Aristolochic Acid and Ochratoxin A Drugs


DNA microarray is an authoritative method for investigation in various cancer and tumors such as renal cancer. Gene expression data include a huge amount of data that the selection of informative data among it is very difficult. Broadly chemometric methods have been used for statistical analysis of gene expression data and different algorithms are used for gene selection. Weighted voting algorithm (WVA) provides a statistical basis for the selection from an original 15,923 probesets, a limited number of most effective genes in discriminating two types of rats treated with Aristolochic acid (AA) and Ochratoxin A (OTA) drugs, that are two chemical compounds with specially toxic effect for kidney and cause renal cancer. In the next step, diminished microarray data are classified by partial least square discriminant analysis (PLSDA) and support vector machine (SVM) methods. Results show that these methods are efficient and sufficient for classification purpose.

Share and Cite:

Masoum, S. and Ebrahimabadi, E. (2014) Weighted Voting Analysis of DNA Microarray for Gene Selection and Gene Expression Analysis of Two Types of Rats Treated with Aristolochic Acid and Ochratoxin A Drugs. Open Access Library Journal, 1, 1-12. doi: 10.4236/oalib.1100859.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ramos-Barcelo, E., Rioja, J., Pes, P.L., de la Rosette, J.J. and de Reijke, T.M. (2009) Is Age a Prognostic Factor for Treatment Outcome in Renal Cell Cancer—A Comprehensive Review. Critical Reviews in Oncology/Hematology, 72, 83-89.
[2] Jemal, A., Thun, M.J., Ries, L.A.G., Howe, H.L., Weir, H.K., Center, M.M., Ward, E., Wu, X.C., Eheman, C. and Anderson, R. (2008) Annual Report to the Nation on the Status of Cancer, 1975-2005, Featuring Trends in Lung Cancer, Tobacco Use, and Tobacco Control. Journal of the National Cancer Institute, 100, 1672-1694.
[3] Jemal, A., Clegg, L.X., Ward, E., Ries, L.A.G., Wu, X., Jamison, P.M., Wingo, P.A., Howe, H.L., Anderson, R.N. and Edwards, B.K. (2004) Annual Report to the Nation on the Status of Cancer, 1975-2001, with a Special Feature Regarding Survival. Cancer, 101, 3-27.
[4] Arbyn, M., Raifu, A., Autier, P. and Ferlay, J. (2007) Burden of Cervical Cancer in Europe: Estimates for 2004. Annals of Oncology, 18, 1708-1715.
[5] Kouba, E., Smith, A., McRackan, D., Wallen, E.M. and Pruthi, R.S. (2007) Watchful Waiting for Solid Renal Masses: Insight into the Natural History and Results of Delayed Intervention. The Journal of Urology, 177, 466-470.
[6] Chuang, L.Y., Chang, H.W., Tu, C.J. and Yang, C.H. (2008) Improved Binary PSO for Feature Selection Using Gene Expression Data. Computational Biology and Chemistry, 32, 29-38.
[7] Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T. and Yu, X. (2000) Distinct Types of Diffuse Large B-Cell Lymphoma Identified by Gene Expression Profiling. Nature, 403, 503-511. http://dx.doi.org/10.1038/35000501
[8] Shen, Q., Shi, W.M., Kong, W. and Ye, B.X. (2007) A Combination of Modified Particle Swarm Optimization Algorithm and Support Vector Machine for Gene Selection and Tumor Classification. Talanta, 71, 1679-1683.
[9] Liang, J. and Kachalo, S. (2002) Computational Analysis of Microarray Gene Expression Profiles: Clustering, Classification, and Beyond. Chemometrics and Intelligent Laboratory Systems, 62, 199-216.
[10] Karakach, T.K., Flight, R.M., Douglas, S.E. and Wentzell, P.D. (2010) An Introduction to DNA Microarrays for Gene Expression Analysis. Chemometrics and Intelligent Laboratory Systems, 104, 28-52.
[11] Kerr, G., Ruskin, H.J., Crane, M. and Doolan, P. (2008) Techniques for Clustering Gene Expression Data. Computers in Biology and Medicine, 38, 283-293.
[12] Madsen, R., Lundstedt, T. and Trygg, J. (2010) Chemometrics in Metabolomics—A Review in Human Disease Diagnosis. Analytica Chimica Acta, 659, 23-33.
[13] Mukhopadhyay, A. and Maulik, U. (2009) Towards Improving Fuzzy Clustering Using Support Vector Machine: Application to Gene Expression Data. Pattern Recognition, 42, 2744-2763.
[14] Biffi, A., Anderson, C.D., Nalls, M.A., Rahman, R., Sonni, A., Cortellini, L., Rost, N.S., Matarin, M., Hernandez, D.G., Plourde, A., de Bakker, P.I.W., Ross, O.A., Greenberg, S.M., Furie, K.L., Meschia, J.F., Singleton, A.B., Saxena, R. and Rosand, J. (2010) Principal-Component Analysis for Assessment of Population Stratification in Mitochondrial Medical Genetics. The American Journal of Human Genetics, 86, 904-917.
[15] Del Chierico, F., Masotti, A., Onori, M., Fiscarelli, E., Mancinelli, L., Ricciotti, G., Alghisi, F., Dimiziani, L., Manetti, C., Urbani, A., Muraca, M. and Putignani, L. (2012) MALDI-TOF MS Proteomic Phenotyping of Filamentous and Other Fungi from Clinical Origin. Journal of Proteomics, 75, 3314-3330.
[16] Pierce, K.M., Kehimkar, B., Marney, L.C., Hoggard, J.C. and Synovec, R.E. (2012) Review of Chemometric Analysis Techniques for Comprehensive Two Dimensional Separations Data. Journal of Chromatography A, 1255, 3-11.
[17] Stachurska, A., Kozakowska, M., Jozkowicz, A., Dulak, J. and Loboda, A. (2011) Aristolochic Acid I and Ochratoxin A Differentially Regulate VEGF Expression in Porcine Kidney Epithelial Cells—The Involvement of SP-1 and HIFs Transcription Factors. Toxicology Letters, 204, 118-126.
[18] Shibutani, S., Dong, H., Suzuki, N., Ueda, S., Miller, F. and Grollman, A.P. (2007) Selective Toxicity of Aristolochic Acids I and II. Drug Metabolism and Disposition, 35, 1217-1222.
[19] Amézqueta, S., González-Penas, E., Murillo-Arbizu, M. and López de Cerain, A. (2009) Ochratoxin A Decontamination: A Review. Food Control, 20, 326-333.
[20] Duarte, S.C., Pena, A. and Lino, C.M. (2010) A Review on Ochratoxin A Occurrence and Effects of Processing of Cereal and Cereal Derived Food Products. Food Microbiology, 27, 187-198.
[21] Debelle, F., Nortier, J., Arlt, V.M., De Prez, E., Vienne, A., Salmon, I., Phillips, D.H., Deschodt-Lanckman, M. and Vanherweghem, J.L. (2003) Effects of Dexfenfluramine on Aristolochic Acid Nephrotoxicity in a Rat Model for Chinese-Herb Nephropathy. Archives of Toxicology, 77, 218-226.
[22] Mei, N., Arlt, V.M., Phillips, D.H., Heflich, R.H. and Chen, T. (2006) DNA Adduct Formation and Mutation Induction by Aristolochic Acid in Rat Kidney and Liver. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 602, 83-91.
[23] Stemmer, K., Ellinger-Ziegelbauer, H., Ahr, H.J. and Dietrich, D.R. (2007) Carcinogen-Specific Gene Expression Profiles in Short-Term Treated Eker and Wild-Type Rats Indicative of Pathways Involved in Renal Tumorigenesis. Cancer Research, 67, 4052-4068.
[24] Hino, O., Kobayashi, E., Hirayama, Y., Kobayashi, T., Kubo, Y., Tsuchiya, H., Kikuchi, Y. and Mitani, H. (1995) Molecular Genetic Basis of Renal Carcinogenesis in the Eker Rat Model of Tuberous Sclerosis (Tsc2). Molecular Carcinogenesis, 14, 23-27.
[25] Walker, C., Goldsworthy, T.L., Wolf, D.C. and Everitt, J. (1992) Predisposition to Renal Cell Carcinoma Due to Alteration of a Cancer Susceptibility Gene. Science, 255, 1693-1695.
[26] Wolf, D., Goldsworthy, T., Janszen, D., Harden, R., Donner, E., David, C. and Everitt, J. (2000) Promotion by Sodium Barbital Induces Early Development but Does not Increase the Multiplicity of Hereditary Renal Tumors in Eker Rats. Carcinogenesis, 21, 1553-1558.
[27] Zheng, C.H., Huang, D.S., Kong, X.Z. and Zhao, X.M. (2008) Gene Expression Data Classification Using Consensus Independent Component Analysis. Genomics, Proteomics & Bioinformatics, 6, 74-82.
[28] Ramaswamy, S., Ross, K.N., Lander, E.S. and Golub, T.R. (2003) A Molecular Signature of Metastasis in Primary Solid Tumors. Nature Genetics, 33, 49-54.
[29] Jen, C.H., Yang, T.P., Tung, C.Y., Su, S.H., Lin, C.H., Hsu, M.T. and Wang, H.W. (2008) Signature Evaluation Tool (SET): A Java-Based Tool to Evaluate and Visualize the Sample Discrimination Abilities of Gene Expression Signatures. BMC Bioinformatics, 9, 58.
[30] Wang, Y., Meng, F., Arlt, V.M., Mei, N., Chen, T. and Parsons, B.L. (2011) Aristolochic Acid-Induced Carcinogenesis Examined by ACB-PCR Quantification of H-Ras and K-Ras Mutant Fraction. Mutagenesis, 26, 619-628.
[31] Cavin, C., Delatour, T., Marin-Kuan, M., Fenaille, F., Holzhauser, D., Guignard, G., Bezencon, C., Piguet, D., Parisod, V., Richoz-Payot, J. and Schilter, B. (2009) Ochratoxin A—Mediated DNA and Protein Damage: Roles of Nitrosative and Oxidative Stresses. Toxicological Sciences, 110, 84-94.
[32] Adler, M., Müller, K., Rached, E., Dekant, W. and Mally, A. (2009) Modulation of Key Regulators of Mitosis Linked to Chromosomal Instability Is an Early Event in Ochratoxin A Carcinogenicity. Carcinogenesis, 30, 711-719.
[33] El-Hashemite, N., Zhang, H., Henske, E.P. and Kwiatkowski, D.J. (2003) Mutation in TSC2 and Activation of Mammalian Target of Rapamycin Signalling Pathway in Renal Angiomyolipoma. The Lancet, 361, 1348-1349.
[34] Green, A.J., Johnson, P.H. and Yates, J.R.W. (1994) The Tuberous Sclerosis Gene on Chromosome 9q34 Acts as a Growth Suppressor. Human Molecular Genetics, 3, 1833-1834.
[35] Slegtenhorst, M., Hoogt, R., Hermans, C., Nellist, M., Janssen, B., Verhoef, S., Lindhout, D., Ouweland, A., Halley, D. and Young, J. (1997) Identification of the Tuberous Sclerosis Gene TSC1 on Chromosome 9q34. Science, 277, 805- 808.
[36] Chin, E., Zhou, J. and Bondy, C. (1992) Renal Growth Hormone Receptor Gene Expression: Relationship to Renal Insulin-Like Growth Factor System. Endocrinology, 131, 3061-3066.
[37] Flyvbjerg, A., Bennett, W.F., Rasch, R., Kopchick, J.J. and Scarlett, J.A. (1999) Inhibitory Effect of a Growth Hormone Receptor Antagonist (G120K-PEG) on Renal Enlargement, Glomerular Hypertrophy, and Urinary Albumin Excretion in Experimental Diabetes in Mice. Diabetes, 48, 377-382.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.