Submit
Share This Article:

Pyrolysis Oil from the Fruit and Cake of Jatropha curcas Produced Using a Low Temperature Conversion (LTC) Process: Analysis of a Pyrolysis Oil-Diesel Blend

Abstract Full-Text HTML Download Download as PDF (Size:407KB) PP. 332-338
DOI: 10.4236/epe.2011.33041    7,177 Downloads   13,218 Views   Citations

ABSTRACT

Background: The LTC process is a technique that consists of heating solid residues at a temperature of 380oC - 420oC in an inert atmosphere and their products are evaluated individually: these products include pyrolysis oil, pyrolytic char, gas and water. The objective of this study was to compare the effects of the use of oils obtained by pyrolysis of Jatropha curcas as an additive for diesel in different proportions. Results: A Low Temperature Conversion (LTC) process carried out on samples of Jatropha curcas fruit and generated pyrolysis oil, pyrolyic char, gas and aqueous fractions in relative amounts of 23, 37, 16 and 14% [w/w] respectively for Jatropha curcas fruit and 19, 47, 12 and 22% [w/w] respectively for Jatropha curcas cake. The oil fractions were analyzed by FTIR, 1H NMR, 13C NMR, GCMS and physicochemical analysis. The pyrolysis oil was added to final concentrations of 2, 5, 10 and 20% [w/w] to commercial diesel fuel. The density, viscosity, sulfur content and flash point of the mixtures were determined. Conclusions: The results indicated that the addition of the pyrolysis oil maintained the mixtures within the standards of the diesel directive, National Petroleum Agency (ANP no 15, of 19. 7. 2006), with the exception of the viscosity of the mixtures containing 20% pyrolysis oil.

Cite this paper

M. Figueiredo, G. Romeiro, R. Silva, P. Pinto, R. Damasceno, L. d`Avila and A. Franco, "Pyrolysis Oil from the Fruit and Cake of Jatropha curcas Produced Using a Low Temperature Conversion (LTC) Process: Analysis of a Pyrolysis Oil-Diesel Blend," Energy and Power Engineering, Vol. 3 No. 3, 2011, pp. 332-338. doi: 10.4236/epe.2011.33041.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. K.-K. Figueiredo, G. A. Romeiro and R. N. Damasceno, “Low Temperature Conversion (LTC) of Castor Seeds—A Study of the Formation (Pyrolysis Oil),” Journal of Analytical and Applied Pyrolysis, Vol. 86, No. 1, 2009, pp. 53-57. doi:10.1016/j.jaap.2009.04.006
[2] G. A. Romeiro, R. P. Guimar?es, S. M. Sella, R. N. Damasceno and G. E. G. Vieira, “Low Temperature Conversion (LTC) —An Alternative Method to Treat Sludge Generated in an Industrial Wastewater Treatment Station,” Bioresource Technology, Vol. 100, No. 4, 2009, pp. 1544-1547. doi:10.1016/j.biortech.2008.08.040
[3] G. A. Romeiro, C. T. I. Silveira, L. O. Monteggia, E. Bayer and M. Kutubuddin, “Low Temperature Conversion of Sludge and Shaving from Latter Industry,” Water Science and Technology, Vol. 46, No. 10, 2002, pp. 277-283.
[4] G. A. Romeiro, T. H. Santos, E. Bayer, M. Kutubuddin and R. N. Damasceno, “GC/MS Analysis of the Extratives of Corncobs,” Advanced Food Science, Vol. 23, 2001, pp. 160-164.
[5] G. A. Romeiro, H. Lutz, R. N. Damasceno, K. Mohamed and E. Bayer, “Low Temperature Conversion of Some Brazilian Municipal and Industrial Sludges,” Bioresource Technology, Vol. 74, No. 2, 2000, pp. 103-107. doi:10.1016/S0960-8524(00)00011-0
[6] D. Mohan, C. U. Pittman and P. H. Steels, “Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review,” Energy Fuels, Vol. 20, No. 3, 2006, pp. 848-889. doi:10.1021/ef0502397
[7] A. Demirbas, “Pyrolysis of Ground Beech Wood in Irregular Heating Rate Conditions,” Journal of Analytical and Applied Pyrolysis, Vol. 73, No. 1, 2005, pp. 39-43. doi:10.1016/j.jaap.2004.04.002
[8] S. R. Tewfik, “Biomass Utilization Facilities and Biomass Processing Technologies,” Energy Education Science and Technology, Vol. 4, 2004, pp. 1-19.
[9] E. Bayer, “Process and Apparatus for the Conversion of Sludges,” US Patent No. 4618735, 1986.
[10] E. Bayer, A. Maurer, G. Becker and M. Kutubuddin, “Recovery of Activated Carbons from Wastes via Low Temperature Conversion, Part 1: Preparation and Determination of Pore Structure,” Fresenius Environmental Bull, Vol. 4, 1995, pp. 533-538.
[11] E. Bayer, C. Deyle and M. Kutubuddin, “Recovery of Activated Carbons from Wastes via Low Temperature Conversion, Part 2: Analysis and Applicability,” Fresenius Environmental Bulletin, Vol. 4, No. 9, 1995, pp. 539-544.
[12] H. Lutz, K. Esuoso, M. Kutubuddin and E. Bayer, “Low Temperature Conversion of Sugar-Cane by Products,” Biomass and Bioenergy, Vol. 15, No. 2, 1998, pp. 155-162. doi:10.1016/S0961-9534(98)00032-4
[13] R. D. Zhang, H. He, X. Y. Shi, B. Q. He and J. X. Wang, “Preparation and Emission Characteristics of Ethanol— Diesel Fuel Blends,” Journal of Environmental Sciences, Vol. 16, No. 5, 2004, pp. 793-796.
[14] X. C. Lu, J. G. Yang, W. G. Zhang and Z. Huang, “Effect of Cetane Number Improver on Heat Rate and Emissions of High Speed Diesel Engine Fueled with Ethanol—Diesel Blend Fuel,” Fuel, Vol. 83, No. 14-15, 2004, pp. 2013-2020. doi:10.1016/j.fuel.2004.05.003
[15] G. W. Huber, S. Iborra and A. Corma, “Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts and Engineering,” Chemical Review, Vol. 106, No. 9, 2006, pp. 4044-4098. doi:10.1021/cr068360d
[16] A. C. Hansen, Q. Zhang and P. W. L. Lyne, “Ethanol–Diesel Fuel Blends—A Review,” Bioresource Technology, Vol. 96, No. 3, 2005, pp. 277-285. doi:10.1016/j.biortech.2004.04.007
[17] D. G. Lima, V. C. D. Soares, E. B. Ribeiro, D. A. Carvalho, E. C. V. Cardoso, F. C. Rassi, K. C. Mundim, J. C. Rubim and P. A. Z. Suarez, “Diesel-Like Fuel Obtained by Pyrolysis of Vegetable Oils,” Journal of Analytical and Applied Pyrolysis, Vol. 71, No. 2, 2004, pp. 987-996. doi:10.1016/j.jaap.2003.12.008
[18] N. M. Ribeiro, A. C. Pinto, M. Quintella, G. O. Rocha, L. S. G. Teixeira, L. L. N. Guarieiro, M. C. Rangel, M. C. C. Veloso, M. J. C. Rezende, R. S. Cruz, A. M. Oliveira, E. A. Torres and J. B. Andrade, “The Role of Additives for Diesel and Diesel Blended (Ethanol or Biodiesel) Fuels: A Review,” Energy and Fuels, Vol. 21, No. 4, 2007, pp. 2433-2445. doi:10.1021/ef070060r
[19] K. H. Song, P. Nag, T. A. Litzinger and D. C. Haworth, “Effects of Oxygenated Additives on Aromatic Species in Fuel-Rich, Premixed Ethane Combustion: A Modeling Study,” Combustion and Flame, Vol. 135, No. 3, 2003, pp. 341-349. doi:10.1016/S0010-2180(03)00180-9
[20] S. L. Dmytryshyn, A. K. Dalai, S.T. Claudhari, H. K. Mishra and M. J. Reaney, “Synthesis and Characterization of Vegetable Oil Derived Esters: Evaluation for Their Diesel Additive Properties,” Bioresource Te- chnology, Vol. 92, No. 1, 2004, pp. 55-64. doi:10.1016/j.biortech.2003.07.009
[21] X. Shi, Y. Yu, H. He, S. Shuai, J. Wang and R. Li, “Emission Characteristics Using Methyl Soyate-Ethanol- Diesel Fuel Blends on a Diesel Engine,” Fuel, Vol. 84, No. 12-13, 2005, pp. 1543-1549. doi:10.1016/j.fuel.2005.03.001
[22] M. K.-K. Figueiredo, G. A. Romeiro, R. N. Damasceno, L. A. d’Avila and A. P. Franco, “The Isolation of Pyrolysis Oil from Castor Seeds via a Low Temperature Conversion (LTC) Process and Its Use in a Pyrolysis Oil—Diesel Blend,” Fuel, Vol. 88, No. 11, 2009, pp. 2193-2198. doi:10.1016/j.fuel.2009.05.025
[23] J. Heller, “Physic Nut (Jatropha curcas)—Promoting the Conservation and Use of Underutilized and Neglected Crops,” Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, 1996, p. 66.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.