The DQF-COSY NMR Experiment, a Way to Detect Small J Couplings in the Case of Fast Relaxing Nuclei: Application to 59Co in the Tetrahedral Mixed-Metal Cluster HRuCo3(CO)11(PPh3)

Abstract

The first investigation and analysis of 59Co 2D NMR homonuclear chemical shift correlation spectra for a ruthenium-based tetrahedral mixed-metal cluster HRuCo3(CO)11(PPh3) are reported. For this cluster in solution and by contrast to the conventional COSY NMR experiment, the double-quantum filtered (DQF) COSY NMR spectrum proves the existence of a scalar coupling constant between 59Co nuclei. In order to obtain a value of this coupling, the 2D COSY spectrum for a three-spin 7/2 AX2 system has been simulated by numerical density matrix calculations. The comparison between experimental and theoretical 2D NMR COSY spectra gives a spin-coupling constant |1J(59Co-59Co)| < 300 Hz for this cluster.

Share and Cite:

Rosé, J. and Kempgens, P. (2014) The DQF-COSY NMR Experiment, a Way to Detect Small J Couplings in the Case of Fast Relaxing Nuclei: Application to 59Co in the Tetrahedral Mixed-Metal Cluster HRuCo3(CO)11(PPh3). Open Access Library Journal, 1, 1-9. doi: 10.4236/oalib.1100622.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Jeener, J. (1971) Ampere International Summer School, Basko Polje, Yugoslavia.
[2] Reed, D. (1984) Applications of Two-Dimensional Nuclear Magnetic Resonance for the Boron Chemist. A COSY Study of Some Polyhedral Boranes. Journal of Chemical Research, 198-199.
[3] Venable, T.L., Hutton, W.C. and Grimes, R.N. (1984) Two-Dimensional Boron-11-Boron-11 Nuclear Magnetic Resonance Spectroscopy as a Probe of Polyhedral Structure: Application to Boron Hydrides, Carboranes, Metallaboranes and Metallacarboranes. Journal of the American Chemical Society, 106, 29-37.
http://dx.doi.org/10.1021/ja00313a007
[4] Venable, T.L., Hutton, W.C. and Grimes, R.N. (1982) Atom Connectivities in Polyhedral Boranes Elucidated via Two-Dimensional J-Correlated Boron-11-Boron-11 FT NMR: A General Method. Journal of the American Chemical Society, 104, 4716-4717.
http://dx.doi.org/10.1021/ja00381a053
[5] Hermanek, S., Fusek, J., Stibr, B., Plesek, J. and Jelinek, T. (1986) Elucidation of Structures of Nido-y-CB8H12 and by Two-Diemnsional 11B-11B NMR Spectroscopy. Polyhedron, 5, 1873-1879.
http://dx.doi.org/10.1016/S0277-5387(00)84871-8
[6] Jacobsen, G.B., Meina, D.G., Morris, J.H., Thomson, C., Andrews, S.J., Reed, D., Welch, A.J. and Gaines, D.F. (1985) Studies of 2,5;6,10;8,10-Tri-m-hydro-nonahydro-nonaborate(1-), [B9H12]-: Preparation, Crystal and Molecular Structure, Nuclear Magnetic Resonance Spectra, Electrochemistry and Reactions. Journal of the Chemical Society, Dalton Transactions, 8, 1645-1654.
http://dx.doi.org/10.1039/dt9850001645
[7] Fontaine, X.L.R., Fowkes, H., Greenwood, N.N., Kennedy, J.D. and Thornton-Pett, M. (1986) Pentamethylcyclopentadienylrhodaborane Chemistry. Part 1. High-Yield Planned Synthesis, Molecular Structure and Nuclear Magnetic Resonance Properties of the Ten-Vertex Nido-6-rhodadecaborane [(h5-C5Me5)RhB9H13]. Journal of the Chemical Society, Dalton Transactions, 3, 547-552.
http://dx.doi.org/10.1039/dt9860000547
[8] Fontaine, X.L.R., Fowkes, H., Greenwood, N.N., Kennedy, J.D. and Thornton-Pett, M. (1987) Pentamethylcyclopentadienylrhodaborane Chemistry. Part 2. The Reaction of [6-(h5-C5Me5)-nido-6-RhB9H13] with Dimethyl Phenylphosphine and the Characterization of [5-(h5-C5Me5)-nido-5-RhB9H11-7-(PMe2Ph)], [2-(h5-C5Me5)-closo-2-RhB9H7-3,10-(PMe2Ph)2], and [2-(h5-C5Me5)-nido-2-RhB8H10-5-(PMe2Ph)] by X-Ray Diffraction Analysis and Nuclear Magnetic Resonance Spectroscopy. Journal of the Chemical Society, Dalton Transactions, 6, 1431-1443.
http://dx.doi.org/10.1039/dt9870001431
[9] Fontaine, X.L.R., Greenwood, N.N., Kennedy, J.D. and MacKinnon, P. (1988) Boron-11 and Proton Nuclear Magnetic Resonance Study of anti-B18H22 and Its Anions, Anti-[B18H21]- and anti-[B18H20]2-. The Crystal and Molecular Structure of [NMe4]2[anti-B18H20]. Journal of the Chemical Society, Dalton Transactions, 7, 1785-1793.
http://dx.doi.org/10.1039/dt9880001785
[10] Goodreau, B.H. and Spencer, J.T. (1992) Small Heteroborane Cluster Systems. 5. Factors Affecting the 2D 11B-11B (Boron-11) COSY NMR Spectra of Terminal- and Bridge-Substituted Pentaborane Cluster Systems. Inorganic Chemistry, 31, 2612-2621.
http://dx.doi.org/10.1021/ic00038a056
[11] Domaille, P.J. (1984) The 1- and 2-Dimensional Tungsten-183 and Vanadium-51 NMR Characterization of Isopolymetalates and Heteropolymetalates. Journal of the American Chemical Society, 106, 7677-7687.
http://dx.doi.org/10.1021/ja00337a004
[12] Moskau, D. and Günther, H. (1987) 2H,2H-COSY and 2H,2H,13C-RELAY NMR Experiments for the Analysis of Deuterated Compounds. Angewandte Chemie International Edition, 26, 156-157.
http://dx.doi.org/10.1002/anie.198701561
[13] Günther, H., Moskau, D., Dujardin, R. and Maercker, A. (1986) 6Li-6Li-Cosy—A New Tool for Structure Determinations of Lithium Organic Compounds in Solution. Tetrahedron Letters, 27, 2251-2254.
http://dx.doi.org/10.1016/S0040-4039(00)84499-8
[14] Günther, H., Moskau, D., Bast, P. and Schmalz, D. (1987) Modern NMR Spectroscopy of Organolithium Compounds. Angewandte Chemie International Edition, 26, 1212-1220.
http://dx.doi.org/10.1002/anie.198712121
[15] Moskau, D., Frankmölle, W., Eppers, O., Mons, H.-E. and Günther, H. (1994) Homonuclear Correlation Experiments with Quadrupolar Nuclei. Proceedings of the Indian Academy of Science, 106, 1471-1480.
[16] Barr, D., Clegg, W., Hodgson, S.M., Mulvey, R.E., Reed, D., Snaith, R. and Wright, D.S. (1988) A Li8 Cluster of Three Edge-Connected Li4 Tetrahedra Held by Li-N, Li C, and Li Li Interactions: Crystal Structure of (o-LiC6H4CH2·NLi·CH2CH2NMe2)4 and Detection of Metal Metal Coupling within It by 7Li COSY n.m.r. Spectroscopy. Journal of the Chemical Society, Chemical Communications, 367-369.
[17] Kempgens, P., Raya, J., Elbayed, K., Granger, P., Rosé, J. and Braunstein, P. (2000) Theoretical Study of Two-Dimensional COSY Experiments for S = 7/2 Spins: Application to 59Co in the Tetrahedral Cluster HFeCo3(CO)11PPh2H. Journal of Magnetic Resonance, 142, 64-73.
http://dx.doi.org/10.1006/jmre.1999.1903
[18] Kempgens, P., Elbayed, K., Raya, J., Granger, P., Rosé, J. and Braunstein, P. (2006) Investigation of Tetrahedral Mixed-Metal Carbonyl Clusters by Two-Dimensional 59Co COSY and DQFCOSY NMR Experiments. Inorganic Chemistry, 45, 3378-3383.
http://dx.doi.org/10.1021/ic051544a
[19] Kempgens, P. and Rosé, J. (2011) Determination of 1J(59Co-59Co) Scalar Coupling Constants in the Tetrahedral MixedMetal Cluster HFeCo3(CO)10(PCyH2)(PPh2[CH2C(O)Ph]) Using COSY-Type NMR Experiments. Journal of Magnetic Resonance, 209, 88-93.
http://dx.doi.org/10.1016/j.jmr.2010.12.007
[20] Kempgens, P. (2010) The Theory of COSY NMR Experiments Revisited: Application to an AX Spin System of Quadrupolar Nuclei. Concepts in Magnetic Resonance Part A, 36A, 170-177.
http://dx.doi.org/10.1002/cmr.a.20159
[21] Kempgens, P. (2010) The Theory of DQF-COSY NMR Experiments. I. Amplitude Modulation of the Signal. Concepts in Magnetic Resonance Part A, 36A, 341-346.
http://dx.doi.org/10.1002/cmr.a.20168
[22] Kempgens, P. (2010) The Theory of DQF-COSY NMR Experiments. II. Phase Modulation of the Signal. A Simple Relationship between the Coefficients Needed to Calculate the COSY and DQF-COSY NMR Spectra of an AX Spin System of Quadrupolar Nuclei. Concepts in Magnetic Resonance Part A, 36A, 394-399.
http://dx.doi.org/10.1002/cmr.a.20167
[23] Kempgens, P. (2011) The COSY and DQF-COSY NMR Spectra of an AX System of Spins I = 3/2. Concepts in Magnetic Resonance Part A, 38A, 7-15.
http://dx.doi.org/10.1002/cmr.a.20200
[24] Kempgens, P. (2011) The COSY and DQF-COSY NMR Spectra for Systems of Three Spins I = 7/2. Concepts in Magnetic Resonance Part A, 38A, 74-83.
http://dx.doi.org/10.1002/cmr.a.20209
[25] Braunstein, P., Oro, L.A. and Raithby, P.R. (1999) Metal Clusters in Chemistry. Wiley-VCH, Weinheim.
http://dx.doi.org/10.1002/9783527618316
[26] Braunstein, P. and Rosé, J. (1995) 7-Catalysis and Related Reactions with Compounds Containing Heteronuclear Metal—Metal Bonds. In: Abel, E.W., Stone, F.G.A. and Wilkinson, G., Eds., Comprehensive Organometallic Chemistry, 2nd Edition, Pergamon Press, Oxford, 351-385.
http://dx.doi.org/10.1016/B978-008046519-7.00091-5
[27] Braunstein, P. and Rosé, J. (1999) Heterometallic Clusters in Catalysis. In: Braunstein, P., Oro, L.A. and Raithby, P.R., Eds., Metal Clusters in Chemistry, Wiley-VCH, Weinheim.
http://dx.doi.org/10.1002/9783527618316.ch2b
[28] Richert, T., Elbayed, K., Raya, J., Granger, P., Braunstein, P. and Rosé, J. (1996) 59Co NMR in Tetrahedral Clusters. Magnetic Resonance in Chemistry, 34, 689-696.
http://dx.doi.org/10.1002/(SICI)1097-458X(199609)34:9<689::AID-OMR955>3.0.CO;2-U
[29] Braunstein, P., Rosé, J., Granger, P., Raya, J., Bouaoud, S.E. and Grandjean, D. (1991) Cobalt-59 NMR Study of Cluster Reactions: Solvent and Ligand Effects in Mixed-Metal, Tetrahedral MCo3 (M=Iron, Ruthenium) Carbonyl Clusters. Crystal Structure of FeCo3(μ3-H)(μ-CO)3(CO)8(PPh2H). Organometallics, 10, 3686-3693.
http://dx.doi.org/10.1021/om00056a046
[30] Matsuzaka, H., Kodama, T., Uchida, Y. and Hidai, M. (1988) The Chemistry of Heteronuclear Clusters and Homogeneous Multimetallic Catalysts. Part 8. Matallo-Slective Substitution Reaction by Amines or Phosphines in HRuCo3(CO)12. Infrared and Proton and Cobalt-59 NMR Studies of HRuCo3(CO)12-xLx (L = Amines or Phosphines; x = 0 - 2) and Crystal Structure HruCo3(CO)11(PPh3). Organometallics, 7, 1608-1613.
http://dx.doi.org/10.1021/om00097a025
[31] Abragam, A. (1961) The Principles of Nuclear Magnetism. Oxford University Press, Oxford.
[32] Elbayed, K., Kempgens, P., Raya, J., Granger, P. and Rosé, J. (1998) Differential Line Broadening in the Presence of Quadrupolar-CSA Interference. Journal of Magnetic Resonance, 130, 209-216.
http://dx.doi.org/10.1006/jmre.1997.1299
[33] Granger, P., Elbayed, K., Raya, J., Kempgens, P. and Rosé, J. (1995) 31P Differential Line Broadening in the Presence of the 59Co Quadrupolar-CSA Interference in Tetrahedral Clusters. Journal of Magnetic Resonance, Series A, 117, 179-185.
http://dx.doi.org/10.1006/jmra.1995.0726
[34] Carpenter, C., Kempgens, P., Hirschinger, J., Elbayed, K., Raya, J., Granger, P. and Rosé, J. (1996) 13th European Experimental NMR Conference, Paris, 19-24 May 1996.
[35] Kempgens, P., Hirschinger, J., Elbayed, K., Raya, J., Granger, P. and Rosé, J. (1996) Multinuclear NMR Study of HFeCo3(CO)9[P(OCH3)3]3 in the Solid State and in Solution. The Journal of Physical Chemistry, 100, 2045-2052.
http://dx.doi.org/10.1006/jmre.1997.1299

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.