Nonlinear Intestinal Absorption of Fluorescein Isothiocyanate Dextran 4, 000 Caused by Absorptive and Secretory Transporting System

DOI: 10.4236/pp.2011.23025   PDF   HTML     5,533 Downloads   10,310 Views   Citations


The mechanism of the nonlinear concentration dependence of the intestinal absorption of fluorescein isothiocyanate dextran 4,000 (FD-4) was studied using in situ rat intestinal loops and the in vitro Ussing-type chamber method. The intestinal absorption rate constant of FD-4, as evaluated by the intestinal loop method, increased significantly in a nonlinear fashion as the FD-4 concentration increased up to 0.2 mM and tended to decrease at concentrations higher than 0.2 mM. The mucosal-to-serosal permeation of FD-4 across rat ileal sheets, as evaluated by the in vitro Ussing-type chamber method, also increased in a nonlinear fashion in the low concentration range (0.01 - 0.02 mM), before decreasing as the concentration increased further, whereas serosal-to-mucosal permeation decreased in a concentration-dependent manner. In addition, mucosal-to-serosal flux and serosal-to-mucosal flux were increased and reduced in the presence of the metabolic inhibitor 2, 4-dinitrophenol, respectively. These results suggest that FD-4 is predominantly secreted into the intestinal lumen by an efflux transport system.

Share and Cite:

M. Tomita, R. Ohkubo, S. Ouchi, C. Kawahata and M. Hayashi, "Nonlinear Intestinal Absorption of Fluorescein Isothiocyanate Dextran 4, 000 Caused by Absorptive and Secretory Transporting System," Pharmacology & Pharmacy, Vol. 2 No. 3, 2011, pp. 173-179. doi: 10.4236/pp.2011.23025.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. S. Aranow, M. P. Fink. Determinant of intestinal bar- rier failure in critical illness. Br. J. Anesth., 77: 71-81 (1996).
[2] D. W. Riddington, B. Venkatesh, C. M. Boivin, R. S. Bonser, T. S. J. Elliott, T. Marshall, P. J. Mountford and J. F. Bion. Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonaly bypass. JAMA, 275: 1007-1012 (1996).
[3] P. L. Faries, R. J. Simon, A. T. Martella, M. J. Lee and G. W. Machiedo. Intestinal permeability correlates with se- verity of injury in trauma patients. J.Trauma, 44: 1031- 1036 (1998).
[4] H. M. Oudemans-van Straaten, P. G. Jansen, F. J. Hoek, S. J. van Deventer, A. Sturk, C. P. Stoutenbeek, G. N. Tytgat, C. R. Wildevuur and L. Eysman. Intestinal per- meability, circulating endotowin, and postoperative sys- temic responses in cardiac surgery patients. J. Cardiovasc. Vasc. Anesth, 10: 187-194 (1996).
[5] R. Schleiffer and F. Raul. Prophylactic administration of L-arginine improves the intestinal barrier function after mesenteric ischemia. Gut, 39: 194-198 (1996).
[6] A. L. Salzman, P. S. Wollert, H. Wang, M. J. Menconi, M. E. Youssef, C. C. Compton and M. P. Fink. Intralu- minal oxygenation ameliorates ischemia/reperfusion-in- duced gut mucosal hyperpermeability in pigs. Circ. Shock, 40: 37-46 (1993).
[7] A. L. Salzman, H. Wang, P. S. Wollert, T. J. Vandermeer, C. C. Compton, A. G. Denenberg and M. P. Fink. En- dotoxin-induced ileal mucosal hyperpermeability in pigs. Role of tissue acidosis. Am. J. Physiol., 266: G633-G646 (1994).
[8] J. L. Madara. Loosening tight junctions: lessons from the intestine. J. Clin. Invest, 83: 1089-1094 (1989).
[9] T. Sawada, T. Ogawa, M. Tomita, M. Hayashi and S. Awazu. Role of paracellular pathway in nonelectrolyte permeation across rat colon epithelium enhanced by so- dium caprate and sosium caprylate. Pharm. Res., 8: 1365- 1371 (1991).
[10] M. Tomita, Y. Hotta, R. Ohkubo, and S. Awazu. Polar- ized transport wa observed not in hydrophilic compounds but in dextran in Caco-2 cell monolayers. Biol. Pharm. Bull., 22: 330-331 (1999).
[11] M. Tomita, M. J. Menconi, R. L. Delude, and M. P. Fink. Polarized transport of hydrophilic compounds across rat colonic mucosa from serosa to mucosa is temperature dependent. Gastroenterol, 118: 535-543 (2000).
[12] A. Iida, M. Tomita, Y. Matsuura, Y. Takizawa and Ha- yashi, M. Improvement of Intestinal Absorption of P- glycoprotein Substrate by d-Tartaric Acid Drug Metab. and Pharmacokinet. 21(5): 424-428 (2006).
[13] J. T. Doluisio, N.F. Billups, E. T. Sugita and J. V. Swin- tosky, Drug absorption I: An in situ rat gut technique yielding realistic absorption rates. J. Pharm. Sci., 58: 1196-1202 (1969).
[14] M. Tomita, R. Ohkubo and M. Hayashi. Lipopolysaccharide transport system across colonic epithelial cells in normal and infective rat. Drug Metabol. Pharmacokin, 19 (1): 33-40 (2004).
[15] K. Sandvig and B. van Deurs. Selective modification of the endocytic uptake of eicin and fluid phase markers without alteration in transferring endocytosis. J. Biol. Chem., 265: 6382-6388 (1990).
[16] S. Wu-Pong, T. L. Weiss and C. A. Hunt. Antisense c- myc oligodeoxynucleotide cellular uptake. Pharm. Res., 9: 1010-1017 (1992).
[17] S. K. Rodal, G. Skretting, O. Garred, F. Vilhardt, B. van Deurs and K. Sandvig. Extraction of cholesterol with methyl-β-cyclodextrin perturbs formation of clathrin- coated endocytic vesicles. Mol. Biol. Cell, 10: 961-974 (1999).
[18] D. J. Falcone. Heparin stimulation of plasminogen acti- vator secretion by macrophage-like cell line RAW264.7: Role of the scavenger receptor. J. Cell Physiol., 140: 219- 226 (1989).
[19] L. Rohrer, M. Freeman, T. Kodama, M. Penman and M. Krieger. Coiled coli fibrous domains mediated ligand binding by macrophage scavenger receptor type II. Na- ture, 343: 570-572 (1990).
[20] B. L. Leu and J. D. Huang. Inhibition of intestinal P- glycoprotein and effect on etoposide absorption. Cancer Chemother. Pharmacol, 35: 432-436 (1995).
[21] G. Rappa, A. Lorico, R. A Flavell and A. C. Sartorelli. Evidence that the multidrug resistance protein (MRP) function as a co-transporter of glutathione and natural product toxins. Cancer Res., 57: 5232-5237 (1997).
[22] I. Tamai, A. Saheki, R. Saitoh, Y. Sai, I. Yamada and A. Tsuji. Nonlinear intestinal absorption og 5-hydroxytrip- tamine receptor antagonist caused by absorptive and sec- terory transporters. J. Pharmacol. Exp. Ther., 283: 108- 115 (1997).
[23] L. Z. Benet, C. Y. Wu, M. F. Hebert and V. J. Wachee. Intestinal drug metabolism and antiport processes: A po- tential paradigm I oral drug delivery. J. Contr. Rel., 39: 139-143 (1996).
[24] M. Tomita, M. Miwa, S. Ohuchi, T. Oda, J. Aketagawa, Y. Goto, and Masahiro Hayashi. Nonlinear intestinal ab- sorption of (1→3) β-D-glucan caused by absorptive and secretory transporting system. Biol. Pharm. Bull., 32: 1295-1297 (2009).
[25] Tomita, M., Menconi, M. J., Dekude, R. L. and Fink, M. P. Polarized transport of hydrophilic compounds across rat colonic mucosa from serosa to mucosa is temperature dependent. Gastroenterol, 118: 535-543 (2000).
[26] Goligorsky M. S. and Hruska, K. A. Transcytosis in cul- tured prpximal tubular cells. J. Membrane Biol., 93: 237- 247 (1986).
[27] Pantzar, N., Lundin, S. and Westrom, B. R. Bidirectional small-intestinal permeability in the rat to some common marker molecules in vitro. Scan. J. Gastroenterol., 29: 703-709 (1994).

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.