On the Origin of Mass and Angular Momentum of Stellar Objects


The consequence of the 5D projection theory [1] is extended beyond the Gell-Mann Standard Model for hadrons to cover astronomical objects and galaxies. The proof of Poincare conjecture by Pe-relman’s differential geometrical techniques led us to the consequence that charged massless spinors reside in a 5D void of a galactic core, represented by either an open 5D core or a closed, time frozen, 3D × 1D space structure, embedded in massive structural stellar objects such as stars and planets. The open galactic core is obtained from Ricci Flow mapping. There exist in phase, in plane rotating massless spinors within these void cores, and are responsible for 1) the outward spiral motion of stars in the galaxy in the open core, and 2) self rotations of the massive stellar objects. It is noted that another set of eigen states pertaining to the massless charged spinor pairs rotating out of phase in 1D (out of the 5D manifold) also exist and will generate a relatively weak magnetic field out of the void core. For stars and planets, it forms the intrinsic dipole field. Due to the existence of a homogeneous 5D manifold from which we believe the universe evolves, the angular momentum arising from the rotation of the in-phase spinor pairs is proposed to be counter-balanced by the rotation of the matter in the surrounding Lorentz domain, so as to conserve net zero angular momentum. Explicit expression for this total angular momentum in terms of a number of convergent series is derived for the totally enclosed void case/core, forming in general the structure of a star or a planet. It is shown that the variables/parameters in the Lorentz space-time domain for these stellar objects involve the object’s mass M, the object’s Radius R, period of rotation P, and the 5D void radius Ro, together with the Fermi energy Ef and temperature T of the massless charged spinors residing in the void. We discovered three laws governing the relationships between Ro/R, T, Ef and the angular momentum Iω of such astronomical object of interest, from which we established two distinct regions, which we define as the First and Second Laws for the evolution of the stellar object. The Fermi energy Ef was found to be that of the electron mass, as it is the lightest massive elementary particle that could be created from pure energy in the core. In fact the mid-temperature of the transition region between the First and Second Law regions for this Ef value is 5.3 × 109 K, just about that of the Bethe fusion temperature. We then apply our theory to analyse observed data of magnetars, pulsars, pre-main-sequence stars, the NGC 6819 group, a number of low-to-mid mass main sequence stars, the M35 members, the NGC 2516 group, brown dwarfs, white dwarfs, magnetic white dwarfs, and members of the solar system. The ρ = (Ro/R) versus T, and ρ versus P relations for each representative object are analysed, with reference to the general process of stellar evolution. Our analysis leads us to the following age sequence of stellar evolution: pulsars, pre-main-sequence stars, matured stars, brown dwarfs, white dwarfs/magnetic white dwarfs, and finally neutron stars. For every group, we found that there is an increasing average mass density during their evolution.

Share and Cite:

Fung, P. and Wong, K. (2015) On the Origin of Mass and Angular Momentum of Stellar Objects. Journal of Modern Physics, 6, 2303-2341. doi: 10.4236/jmp.2015.615235.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Wong, K.W., Dreschhoff, G.A.M. and Jungner, H. (2014) The Five Dimension Space-Time Universe—A Creation and Grand Unified Field Theory Model. Scientific Research Publishing, USA.
[2] Aad, G., Abajyan,T., Abbott, B., Abdallah, J., del Khalek,S.,Abdelalim, A.A., Abdinov, O, Aben, R., Abi, B., Abolins, M., Abouzeid, O.S., Abramowicz, H., Abreu, H, Acharya, B.S., Adamczyk, L., Adams, D.L., Addy, T.N., Adelman, J., Adomeit, S., Adragna, P., Adye, T., Aefsky, S., Aguilar-Saavedra, J.A., Agustoni, M., Aharrouche, M., Ahlen, S.P., Ahles, F., Ahmad, A., Ahsan, M., Aielli, G. and Akdogan, T. (2012) Physics Letters B, 716, 1-29.
[3] Hamilton, R.S. (1997) Communications in Analysis and Geometry, 5, 1-92.
[4] Perelmann, G. (2002) The Entropy Formula for the Ricci Flow and Its Geometric Applications.
arXiv:math.DG/0211159 [math.DG]
[5] Perelmann, G. (2003) Ricci Flow with Surgery on Three-Manifolds. arXiv:math.DG/0303109 [math.DG]
[6] Perelmann, G. (2003) Finite Extinction Time for the Solutions to the Ricci Flow on Certain Three-Manifolds.
arXiv:math.DG/0307245 [math.DG]
[7] Cao, H.-D. and Zhu, X.-P. (2006) Asian Journal of Mathematics, 10.
[8] Kleiner, B. and Lott, J.W. (2006) Geometry and Topology, 12, 2587-2855. arXiv:math.DG/0605667
[9] Wong, K.W., Dreschhoff, G.A.M. and Jungner, H. (2012) Journal of Modern Physics, 3, 1450-1457.
[10] Gell-Mann, M. (1964) Physical Review Letters, 12, 155.
[11] Wong, K.W., Dreschhoff, G.A.M. and Jungner, H. (2013) The Homogeneous 5D Projection and Realization of Quarks & Hadron Masses. arXiv:1202.5761v3
[12] Wong, K.W., Dreschhoff, G.A.M. and Jungner, H. (2015) Journal of Modern Physics, 6, 890-901.
[13] Wong, K.W., Dreschhoff, G.A.M. and Jungner, H.J.N. (2015) Journal of Modern Physics, 6, 1492-1497.
[14] Wong, K.W., Dreschhoff, G.A.M. and Jungner, H. (2015) Quantum Gauge Confinement of Multiple Quarks Based on the Homogeneous 5D Projection Theory. arXiv.1360.849.
[15] Bilenky, S.M. (2014) Neutrino Oscillations: Brief History and Present Status. arXiv:1408.2864v1 [hep-ph]
[16] Kondepudi, D. and Prigogine, I. (1998) Modern Thermodynamics. John Wiley, Baffins, Chichester, West Sussex, England.
[17] Arons, J. and Tavani, M. (1993) Astrophysical Journal, 403, 249-155.
[18] Philipp de Sousa, G. (1990) Physical Review D, 42, 543-551.
[19] Witten, E. (1991) Communications in Mathematical Physics, 137, 29-66.
[20] Caruso, F., Helayël-Neto, J.A., Martins, J. and Oguri, V. (2012) Effects on the Non-Relativistic Dynamics of a Charged Particle Interacting with a Chern-Simons Potential. arXiv:1211.5597v2 [Quantum-Phy]
[21] Cheng, K.S., Ho, C. and Ruderman, M. (1986) Astrophysical Journal, 300, 500-521.
[22] Zhang, L. and Cheng, K.S. (2001) Astronomy & Astrophysics, 368, 1063-1070.
[23] Zhang, L., Zhang, Y.J. and Cheng, K.S. (2000) Astronomy & Astrophysics, 357, 957-967.
[24] Kasen, D. and Bildsten, L. (2010) Astrophysical Journal, 717, 245-249.
[25] Lorimer, D.R. (2008) Binary and Millisecond Pulsars. arXiv:0811.0762v1[astro-ph]
Lorimer, D.R. and Kramer, M.K. (2005) Handbook of Pulsar Astronomy. Cambridge University Press, Cambridge.
Camilo, F., Ransom, M., Alpern, P.H. and Reynolds, J. (2007) Astrophysical Journal Letters, 666, 93L.
Güver, T., Gögüs, E. and özel, F. (2011) Monthly Notices of the Royal Astronomical Society, 418, 2773-2778.
Güver, T., Gögüs, E. and özel, F. (2012) Monthly Notices of the Royal Astronomical Society, 424, 210-216.
[26] Padmaraj, M.C. and Nair, S.C.K. (1985) Astrophysics. & Astronomy, 6, 165-169.
[27] Xie, Y. and Zhang, S.N. (2011) Power-Law Magnetic Field Decay and Constant Core Temperatures of Magnetars: Normal and Millisecond Pulsars. arXiv:1110.3869v1[astro-ph.HE]
[28] Del Zanna, L., Amato, E. and Bucciantini, N. (2004) Astrophysics & Astronomy, 421, 1063-1073.
[29] Yu, Q.J., Lu, Y.J. and Lin, D.N.C. (2007) On the Origin of the Kinematic Distribution of the Subparsec Young Stars in the Galactic Cente. arXiv:0705.3649
[30] Lyne, A.G. and Graham-Smith, F. (1998) Pulsar Astronomy. Cambridge University Press, Cambridge.
[31] Dermer, C.D. (2013) Astrophysics at Very High Energies, Saas-Fee Advanced Course, 40, 225-355.
[32] Fung, P.C.W. (1967) Canadian Journal of Physics, 46, 1073-1081.
[33] Fung, P.C.W. (1969) Canadian Journal of Physics, 47, 161-177.
[34] Vigano, D. (2014) Isolated Neutron Stars with Clearly Observed Thermal Emission Quiescence.
[35] Pires A.M., Haberl, F., Zavlin, V.E., Motch, C., Zane, S. and Hohle, M.M. (2014) Astronomy & Astrophysics, 563, id.A50, 12 p.
[36] Pavlov, G.G. and Zavlin, V.E. (1997) Constraints on the Mass and Radius of Pulsars from X-Ray Observations of Their Polar Caps. arXiv:astro-ph/9703139v2
[37] Stassun, K.G., Mathieu, R.D., Mazeh, T. and Vrba, F.J. (1999) The Astrophysical Journal, 117, 2941-2979.
[38] Meibom, S., Bames, S.A., Platais, I., Gilliland, R.L., Latham, D.W. and Mathieu, R.D. (2015) Nature, 517, 589-591.
[39] Demircan, O. and Kahraman, G. (1991) Astrophysics and Space Science, 181, 313-322.
[40] Hubrig, S., Nesvacil, N., Schöllerorth, M., Mathys, G., Kurtz, D.W., Wolff, B., Szeifert, T., Cunha, M.S. and Elkin, V.G. (2005) Astrophysics and Astronomy, 440, L37-L40.
[41] D’Antona, F. (2009) Astronomy and Astrophysics, 500, 389-390.
[42] Meibom, S., Mathieu, R.D. and Stassun, K.G. (2009) The Astrophysical Journal, 695, 679-694.
[43] Feiden, A. and Chaboyer, B. (2012) The Astrophysical Journal, 757, 42.
[44] McQuillan, A. and Mazeh, T. (2014) Astrophysics Journal Supplement Series, 24, 14 p.
NASA FACT SHEET-Main Sequence Stars.
[45] Irwin, J., Hodgkin, S., Aigrain, S., Hebb, L, Bouvier, J., Clarke, C., Moraux, E. and Bramich, D.M. (2007) Monthly Notices of the Royal Astronomical Society, 377, 741-758.
[46] Martin, E.L. and Zapatero-Osorio, M.R. (1997) Monthly Notices of the Royal Astronomical Society, 286, L.17-20.
[47] Scholz, A. and Eisloffel, J. (2004) Astronomy & Astrophysics, 421, 259.
McQuillan, A., Aigrain, S. and Mazeh, T. (2013) Monthly Notices of the Royal Astronomical Society, 432, 1203-1216.
[48] Kawaler, S.D. (2003) White Dwarf Rotation: Observations and Theory. In: Maeder, A., Ed., I.A.U. Symposium 215: Stellar Rotation, ASP, San Francisco, 561
Valyavin, G., Bagnulo, S., Monin, D., Fabrika, S., Lee, B.C., Galazutdinov, G., Wade, G.A. and Burlakova, T. (2005) Astronomy & Astrophysics, 439, 1099-1106.
[49] Provencal, J.L., Shipman, H.L., Hog, E. and Thejll, P. (1998) The Astrophysical Journal, 494, 759-767.
[50] Johnson, J. (2007) Extreme Stars: White Dwarfs & Neutron Stars. Lecture Notes, Astronomy 162, Ohio State University, Columbus.
[51] Hamada, T. and Salpeter, E.E. (1961) Astrophysical Journal, 134, 683H.
[52] Brinkworth, C.S., Burleigh, M.R., Lawrie, K., Marsh, T.R. and Knigge, C. (2013) The Astrophysical Journal, 773, 47.
[53] Sartone, N., Ripamont,E., Treves, A. and Turolla, R. (2011) Advances in Space Research, 47, 1294-1297.
[54] Ruderman, M. (1984) Old & New Neutron Stars. Stanford Linear Accelerator Center-Publication, Stanford.
[55] Miller, M.C. (2002) Nature, 420, 31-33.
[56] Taani, A.A., Naso, L., Zhang, C. and Zhao, Y. (2012) Astrophysics and Space Science, 341, 601-609.
[57] Lorime, D.R. (2005) Living Reviews in Relativity, 11, 8.
[58] Williams, D.R. (2013) Sun Fact Sheet. NASA.
[59] Williams, D.R. (2015) NASA Planetary Fact Sheets. NSSDCA, NASA Goddard Space Flight Center, Greenbelt.
[60] Tsiganis, K., Gomes, R., Morbidelli, A. and Levison, H.F. (2005) Nature, 435, 459-461.
[61] Rutledge, R.E., Bildsten, L., Brown, E.F., Pavlov, G.G. and Zavlin, V.E. (2001) Astrophysical Journal, 559, 1054.
[62] Cognard, I., Shraunar, J.A., Taylor, J.H. and Thorsett, S.E. (1996) The Astrophy Journal, 457, L81-L84.
[63] Prialnik, D. (2000) An Introduction to the Theory of Stellar Structure and Evolution. Cambridge University Press, Cambridge, 261 p.
[64] Kippenhahu, R., Weigert, A. and Weiss, A. (2012) The Degenerate Electron Gas, Stellar Structure & Evolution. Astronomy and Astrophysics Library, Springer, 139-150.
[65] Carroll, B.W. and Ostlie, D.A. (2007) An Introduction to Modern Astrophysics §16.3 “The Physics of Degenerate Matter”. 2nd Edition, Addison-Wesley, Boston.
[66] Hoboken, S.F. (2008) The Brightest Star. John Wiley & Sons, New Jersey.
[67] Dreschhoff, G., Jungner, H., Wong, K.W. and Perry, C.A. (2015) JMP, 6, 1095-1103.
[68] Wheeler, J.A. Geons. (1955) Physical Review Online Archive (Prola), 97, 511-536.
Wheeler, J. (1957) Annals of Physics, 2, 604-614.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.