Downscaling Climate Projections over La Plata Basin

DOI: 10.4236/acs.2016.61001   PDF   HTML   XML   4,975 Downloads   5,591 Views   Citations


Regional Climate Models are important tools, which are increasingly being used in studies of impacts and adaptation to climate change at local scale. The goal of this work is to assess the climate change over the La Plata Basin, using the Eta Regional model with a resolution of 10 km. Initial and boundary conditions used by the model are provided by the Eta-20 km model and the HadGEM2-ES Global model. The RCP 4.5 scenario was used for simulations of the future climate. The evaluation of the present climate (1961-1990) shows that the model represents well the spatial and temporal distribution of precipitation and temperature in the region. The model underestimates precipitation over large areas in summer, and overestimates in Southern Brazil in winter. Simulated temperature shows a good correlation with CRU data, with bias less than 1°C. The bias of temperature and precipitation in this simulation setup for the La Plata Basin is substantially reduced in comparison with previous literature using regional models. The climatic projections are shown in timeslices: 2011-2040, 2041-2070, and 2071-2099. In the three timeslices, the simulation project has a trend for an increase in precipitation during summer in Argentina, Uruguay, and southernmost Brazil. This increase is only projected in Southern Brazil during winter. The negative anomaly of precipitation appears in a large portion of the model domain during summer and is limited to some states in Southeast and Central-West Brazil in winter. The area with largest warming is projected in the northern portion of the domain. The projected increase in temperature reaches about 4°C in 2071-2099.

Share and Cite:

Mourão, C. , Chou, S. and Marengo, J. (2016) Downscaling Climate Projections over La Plata Basin. Atmospheric and Climate Sciences, 6, 1-12. doi: 10.4236/acs.2016.61001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Marengo, J.A., Jones, R., Alves, L.M. and Valverde, M.C. (2009) Future Change of Temperature and Precipitation Extremes in South America as Derived from the PRECIS Regional Climate Modeling System. International Journal of Climatology, 29, 2241-2255.
[2] Christensen, J.H., Krishna Kumar, K., Aldrian, E., An, S.-I., Cavalcanti, I.F.A., de Castro, M., Dong, W., Goswami, P., Hall, A., Kanyanga, J.K., Kitoh, A., Kossin, J., Lau, N.-C., Renwick, J., Stephenson, D.B., Xie, S.-P. and Zhou, T. (2013) Climate Phenomena and Their Relevance for Future Regional Climate Change. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Eds., Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, 1217-1308.
[3] Vasconcelos, A.C.F., Schlindwein, S.L., Lana, M.A., Fantini, A.C., Bonatti, M., D’Agostini, L.R. and Martins, S.R. (2014) Land Use Dynamics in Brazilian La Plata Basin and Anthropogenic Climate Change. Climatic Change, 127, 73-81.
[4] Marengo, J.A., Chou, S.C., Torres, R.R., Giarolla, A., Alves, L.M. and Lyra, A. (2014) Climate Change in Central and South America: Recent Trends, Future Projections, and Impacts on Regional Agriculture. CCAFS Working Paper No. 73, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark.
[5] Pesquero, J.F. (2009) Balanco de umidade na regiao do sistema de moncao da América do Sul em cenários climáticos futuros (2071-2100) utilizando o modelo Eta: um estudo de modelagem. 204 p. (INPE-16602-TDI/1588) Tese (Doutorado em Meteorologia)—Instituto Nacional de Pesquisas Espaciais, Sao José dos Campos, 2009.
[6] Marengo, J.A., Chou, S.C., Kay, G., Alves, L., Pesquero, J.F., Soares, W.R, Santos, D.C., Lyra, A.A., Sueiro, G., Betts, R., Chagas, D.J., Gomes, J.L., Bustamante, J.F. and Tavares, P. (2012) Development of Regional Future Climate Change Scenarios in South America Using the Eta CPTEC/HadCM3 Climate Change Projections: Climatology and Regional Analyses for the Amazon, Sao Francisco and the Parana River Basins. Climate Dynamics, 38, 1829-1848.
[7] Chou, S.C., Lyra, A., Mourao, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G. and Marengo, J. (2014) Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. American Journal of Climate Change, 3, 512-527.
[8] Sánchez, E., Solman, S., Remedio, A.R.C., Berbery, H., Samuelsson, P., Da Rocha, R.P., Mourao, C., Li, L., Marengo, J., de Castro, M. and Jacob, D. (2015) Regional Climate Modelling in CLARIS-LPB: A Concerted Approach towards Twenty First Century Projections of Regional Temperature and Precipitation over South America. Climate Dynamics, 45, 2193-2212.
[9] Solman, S.A. (2013) Regional Climate Modeling over South America: A Review. Advances in Meteorology, 2013, Article ID: 504357.
[10] Thomson, A.M., Calvin, K.V., Smith, S.J., Kyle, G.P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M.A., Clarke, L.E. and Edmonds, J.A. (2011) RCP4.5: A Pathway for Stabilization of Radiative Forcing by 2100. Climatic Change, 109, 77-94.
[11] New, M., Hulme, M. and Jones, P. (2000) Representing Twentieth-Century Space Time Climate Variability. Part II: Development of 1901-1996 Monthly Grids of Terrestrial Surface Climate. Journal of Climate, 13, 2217-2238.<2217:RTCSTC>2.0.CO;2
[12] Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C.D., Joshi, M., Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A. and Woodward, S. (2011) Development and Evaluation of an Earth-System Model—HadGEM2. Geoscientific Model Development, 4, 1051-1075.
[13] Cox, P.M. (2001) Description of the TRIFFID Dynamic Global Vegetation Model. Hadley Centre Technical Note 24, Met Office, UK.
[14] Mesinger, F., Janjic, Z.I., Nickovic, S., Gavrilov, D. and Deaven, D.G. (1988) The Step-Mountain Coordinate: Model Description and Performance for Cases of Alpine Lee Cyclogenesis and for a Case of an Appalachian Redevelopment. Monthly Weather Review, 116, 1493-1518.<1493:TSMCMD>2.0.CO;2
[15] Black, T.L. (1994) The New NMC Mesoscale Eta Model: Description and Forecast Samples. Weather Forecasting, 9, 256-278.<0265:TNNMEM>2.0.CO;2
[16] Chou, S.C. (1996) Modelo Regional Eta. Climanálise. Volume 1, Especial Edition, Instituto Nacional de Pesquisas Espaciais, Sao José dos Campos.
[17] Chou, S.C., Fonseca, J.F.B. and Gomes, J.L. (2005) Evaluation of Eta Model Seasonal Precipitation Forecasts over South America Nonlinear Processes. Geophysics, 12, 537-555.
[18] Chou, S.C., Marengo, J.A., Lyra, A., Sueiro, G., Pesquero, J., Alves, L.M., Kay, G., Betts, R., Chagas, D., Gomes, J.L., Bustamante, J. and Tavares, P. (2012) Downscaling of South America Present Climate Driven by 4-Member HadCM3 Runs. Climate Dynamics, 38, 635-653.
[19] MCT (2010) Second National Communication of Brazil to the United Nations Framework Convention on Climate Change. Ministério da Ciência e Tecnologia, Brasília.
[20] Chou, S.C., Lyra, A., Mourao, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., Nobre, P. and Marengo, J. (2014) Evaluation of the Eta Simulations Nested in Three Global Climate Models. American Journal of Climate Change, 3, 438-454.
[21] Fels, S.B. and Schwarzkopf, M.D. (1975) The Simplified Exchange Approximation: A New Method for Radiative Transfer Calculations. Journal of the Atmospheric Sciences, 32, 1475-1488.<1475:TSEAAN>2.0.CO;2
[22] Lacis, A.A. and Hansen, J.E. (1974) A Parametrization of the Absorption Dissipation in the Atmosphere from Large-Scale Balance Requirements. Monthly Weather Review, 49, 608-627.
[23] Betts, A.K. and Miller, M.J. (1986) A New Convective Adjustment Scheme. Part II: Single Column Tests Using GATE Wave, BOMEX and Artic Air-Mass Data Sets. Quarterly Journal Royal Meteorological Society, 112, 693-709.
[24] Janjic, Z.I. (1994) The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Monthly Weather Review, 122, 927-945.<0927:TSMECM>2.0.CO;2
[25] Zhao, Q., Black, T.L. and Baldwin, M.E. (1997) Implementation of the Cloud Prediction Scheme in the Eta Model at NCEP. Weather and Forecasting, 12, 697-712.<0697:IOTCPS>2.0.CO;2
[26] Ek, M., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G. and Tarpley, J.D. (2003) Implementation of Noah Land Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. Journal of Geophysical Research, 108, 8851.
[27] Chen, F., Janjic, Z.I. and Mitchell, K. (1997) Impact of Atmospheric Surface-Layer Parametrization in the New Land-Surface Scheme of the NCEP Mesoscale Eta Model. Boundary Layer Meteorology, 85, 391-421.
[28] IPCC (2013) Summary for Policymakers. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Eds., Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York, 1-30.
[29] IPCC (2000) IPCC Special Report on Emissions Scenarios. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 570.
[30] Van Vuuren, D.P., Edmonds, J., Kainuma, M.L.T., Riahi, K., Thomson, A., Matsui, T., Hurtt, G., Lamarque, J.-F., Meinshausen, M., Smith, S., Grainer, C., Rose, S., Hibbard, K.A., Nakicenovic, N., Krey, V. and Kram, T. (2011) The Representative Concentration Pathways: An Overview. Climatic Change, 109, 5-31.
[31] Rao, V.B. and Hada, K. (1990) Characteristics of Rainfall over Brazil: Annual Variations and Connections with Southern Oscillation. Theoretical and Applied Climatology, 42, 81-91.
[32] Satyamurty, P., Nobre, C.A. and Dias, P.L.S. (1998) Chapter 3: South America. In: Karoly, D.J. and Vincent, D.G., Eds., Meteorology of the Southern Hemisphere, American Meteorology Society, Boston, 243-282.
[33] Solman, S.A., Sanchez, E., Samuelsson, P., et al. (2013) Evaluation of an Ensemble of Regional Climate Model Simulations over South America Driven by the ERA-Interim Reanalysis: Model Performance and Uncertainties. Climate Dynamics, 41, 1139-1157.
[34] Oliveira, A. (1986) Interacoes entre sistemas frontais na América do Sul e a conveccao da Amazonia. (INPE-4008-TDL/239). Thesis, Instituto Nacional de Pesquisas Espaciais, Sao José dos Campos, SP, 115 p.
[35] Urrutia, R. and Vuille, M. (2009) Climate Change Projections for the Tropical Andes Using a Regional Climate Model: Temperature and Precipitation Simulations for the End of the 21st Century. Journal of Geophysical Research, 114, Article ID: D02108.
[36] Lange, S., Rockel, B., Volkholz, J. and Bookhagen, B. (2015) Regional Climate Model Sensitivities to Parametrizations of Convection and Non-Precipitating Subgrid-Scale Clouds over South America. Climate Dynamics, 44, 2839-2857.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.