[1]
|
Kirchhoff, G.R. (1883) Vorlesungen über mathematische Physik—Mechanik. 3 Edition. Teubner, Leipzig.
|
[2]
|
Alves, C.O., Correa, F.J.S.A. and Ma, T.F. (2005) Positive Solutions for a Quasilinear Elliptic Equation of Kirchhoff type. Computers & Mathematics with Applications, 49, 85-93. http://dx.doi.org/10.1016/j.camwa.2005.01.008
|
[3]
|
Cheng, C.T. and Wu, X. (2009) Existence Results of Positive Solutions of Kirchhoff Type Problems. Nonlinear Analysis, 71, 4883-4892. http://dx.doi.org/10.1016/j.na.2009.03.065
|
[4]
|
Ma, T.F. and Rivera, J.E.M. (2003) Positive Solutions for a Nonlinear Nonlocal Elliptic Transmission Problem. Applied Mathematics Letters, 16, 243-248. http://dx.doi.org/10.1016/S0893-9659(03)80038-1
|
[5]
|
Chen, C., Kuo, Y. and Wu, T. (2011) The Nehari Manifold for a Kirchhoff Type Problem Involving Sign Changing Weight Functions. Journal of Differential Equations, 250, 1876-1908.
|
[6]
|
Mao, A.M. and Zhang, Z.T. (2009) Sign-Changing and Multiple Solutions of Kirchhoff Type Problems without the P.S. Condition. Nonlinear Analysis, 70, 1275-1287. http://dx.doi.org/10.1016/j.na.2008.02.011
|
[7]
|
Mao, A.M. and Luan, S.X. (2011) Sign-Changing Solutions of a Class of Nonlocal Quasilinear Elliptic Boundary Value Problems. Journal of Mathematical Analysis and Applications, 383, 239-243.
http://dx.doi.org/10.1016/j.jmaa.2011.05.021
|
[8]
|
Jin, J.H. and Wu, X. (2010) Infinitely Many Radial Solutions for Kirchhoff-Type Problems in RN. Journal of Mathematical Analysis and Applications, 369, 564-574. http://dx.doi.org/10.1016/j.jmaa.2010.03.059
|
[9]
|
Wei, L. and He, X.M. (2012) Multiplicity of High Energy Solutions for Superlinear Kirchho Equations. Journal of Applied Mathematics and Computing, 39, 473-487. http://dx.doi.org/10.1007/s12190-012-0536-1
|
[10]
|
He, X.M. and Zou, W.M. (2009) Infinitely Many Positive Solutions for Kirchhoff-Type Problems. Nonlinear Analysis, 70, 1407-1414. http://dx.doi.org/10.1016/j.na.2008.02.021
|
[11]
|
Brown, K.J. and Zhang, Y. (2003) The Nehari Manifold for a Semilinear Elliptic Equation with a Sign Changing Weight Function. Journal of Differential Equations, 2, 481-499. http://dx.doi.org/10.1016/S0022-0396(03)00121-9
|
[12]
|
Drabek, P., Kufner, A. and Nicolosi, F. (1997) Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter Series in Nonlinear Analysis and Applications Vol. 5. New York.
http://dx.doi.org/10.1515/9783110804775
|