Characterization of asian and north American avian H5N1

DOI: 10.4236/ajmb.2011.12007   PDF   HTML     4,969 Downloads   10,049 Views   Citations


Since the emerge of the highly pathogenic avian H5N1 virus in Asia in 1996, the possibility for this virus to cross species barriers to infect humans and its ability to cause large outbreaks in birds have been a public health concern. This virus has been spreading from Asia to Europe and Africa by migratory birds with North America as its next possible stop. In this study, an ensemble of computational techniques including Random Forests, Informational Spectrum Method, Entropy, and Mutual Information were employed to unravel the distinct characteristics of Asian and North American avian H5N1 in comparison with human and swine H5N1. Critical differences were identified in the HA cleavage and binding sites, the HA receptor selection, the interaction patterns of HA and NA, and NP, PA, PB1, and PB2, and the important sites in the influenza proteins including HA, NA, M1, M2, NS1, NS2, NP, PA, PB1, PB1-F2, and PB2.

Share and Cite:

Hu, W. (2011) Characterization of asian and north American avian H5N1. American Journal of Molecular Biology, 1, 52-61. doi: 10.4236/ajmb.2011.12007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Xu, X., Subbarao, K., Cox, N.J., Guo, Y. (1999) Genetic characterization of the pathogenic influenza A/Goose/ Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology, 261, 15-19. doi:10.1006/viro.1999.9820
[2] Claas, E.C.J., Osterhaus, A.D.M.E., van Beek, R., de Jong, J.C., Rimmelzwaan, G.F., et al. (1998) Human influenza a H5N1 virus related to a highly pathogenic avian influenza virus. The Lancet, 351, 472-477. doi:10.1016/S0140-6736(97)11212-0
[4] Bi, Y., Fu, G., Chen, J., Peng, J., Sun, Y., Wang, J., et al. (2010) Novel swine influenza virus reassortants in pigs, China. Emerging Infectious Diseases. http://www.cdc. gov/EID/content/16/7/1162.htm
[5] Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N. and Kawaoka, Y. (2006) Avian flu: Influenza virus receptors in the human airway. Nature, 440, 435-436. doi:10.1038/440435a
[6] Skehel, J.J. and Wiley, D.C. (2000) Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annual Review of Biochemistry, 69, 531-569. doi:10.1146/annurev.biochem.69.1.531
[7] Glaser, L., Stevens, J., Zamarin, D., Wilson, I.A., García-Sastre, A., Tumpey, T.M., Basler, C.F., Taubenberger, J.K. and Palese, P. (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. Journal of Virology, 79, 11533-11536. doi:10.1128/JVI.79.17.11533-11536.2005
[8] Li, M. and Wang, B. (2006) Computational studies of H5N1 hemagglutinin binding with SA-alpha-2, 3-Gal and SA-alpha-2, 6-Gal. Biochemical and Biophysical Research Communications, 347, 662-668. doi:10.1016/j.bbrc.2006.06.179
[9] Hu, W. (2010) Identification of highly conserved domains in gemagglutinin associated with the receptor binding specificity of influenza viruses: 2009 H1N1, avian H5N1, and swine H1N2. Journal of Biomedical Science and Engineering, 3, 114-123. doi:10.4236/jbise.2010.32017
[10] Hu, W. (2010) Quantifying the effects of mutations on receptor binding specificity of influenza viruses. Journal of Biomedical Science and Engineering, 3, 227-240.
[11] Hu, W. (2010) Highly conserved domains in hemagglutinin of influenza viruses characterizing dual receptor binding. Natural Science, 2, 1005-1014. doi:10.4236/ns.2009.29123
[12] Veljko, V., Henry, L.N., Sanja, G., Nevena, V., Vladimir, P. and Claude, P.M. (2009) Identification of hemagglutinin structural domain and polymorphisms which may modulate swine H1N1 interactions with human receptor. BMC Structural Biology, 9, 62. doi:10.1186/1472-6807-9-62
[13] Veljkovic, V. Veljkovic, N., Muller, C.P., Müller, S., Glisic, S., Perovic, V. and K?hler, H. (2009) Characterization of conserved properties of hemagglutinin of H5N1 and human influenza viruses: Possible consequences for therapy and infection control. BMC Structural Biology, 7, 9-21.
[14] Hu, W. (2009) Analysis of correlated mutations, stalk motifs, and phylogenetic relationship of the 2009 influenza a virus neuraminidase sequences. Journal of Biomedical Science and Engineering, 2, 550-558.
[15] Hu, W. (2010) The interaction between the 2009 H1N1 influenza a hemagglutinin and neuraminidase: Mutations, co-mutations, and the NA stalk motifs. Journal of Biomedical Science and Engineering, 3, 1-12. doi:10.4236/jbise.2010.31001
[16] Chen, G.-W., Chang, S.-C., Mok, C.-K., Lo, Y.-L., Kung, Y.-N., et al. (2006) Genomic signatures of human versus avian influenza a viruses. Emerging Infectious Diseases, 12, 1353-1360.
[17] Chen, G.-W. and Shih, S.-R. (2009) Genomic signatures of influenza a pandemic (H1N1) 2009, virus. Emerging Infectious Diseases, 15, 1897-1903.
[18] Pan, C., Cheung, B., Tan, S., Li, C., Li, L., et al. (2010) Genomic signature and mutation trend analysis of pandemic (H1N1) 2009, influenza A virus. PLoS ONE, 5, Article ID e9549. doi:10.1371/journal.pone.0009549
[19] Miotto, O., Heiny, A., Tan, T.W., August, J.T. and Brusic, V. (2008) Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis. BMC Bioinformatics, 9, S18. doi:10.1186/1471-2105-9-S1-S18
[20] Miotto, O., Heiny, A.T., Albrecht, R., García-Sastre, A., Tan, T.W., August, J.T. and Brusic, V. (2010) Complete-proteome mapping of human influenza A adaptive mutations: Implications for human transmissibility of zoonotic strains. PLoS ONE, 5, Article ID e9025. doi:10.1371/journal.pone.0009025
[21] Finkelstein, D.B., Mukatira, S., Mehta, P.K., Obenauer, J.C., Su, X., Webster, R.G. and Naeve, C.W. (2007) Persistent host markers in pandemic and H5N1 influenza viruses. Journal of Virology, 81, 10292-10299. doi:10.1128/JVI.00921-07
[22] Allen, J.E., Gardner, S.N., Vitalis, E.A. and Slezak, T.R. (2009) Conserved amino acid markers from past influenza pandemic strains. BMC Microbiology, 9, 77. doi:10.1186/1471-2180-9-77
[23] Breiman, L. (2001) Random forests. Machine Learning, 45, 5-32. doi:10.1023/A:1010933404324
[24] Hu, W. (2010) Novel host markers in the 2009 pandemic H1N1 influenza A virus. Journal of Biomedical Science and Engineering, 3, 584-601.
[25] Hu, W. (2010) Nucleotide host markers in the influenza A viruses. Journal of Biomedical Science and Engineering, 3, 684-699.
[26] Katoh, K., Kuma, K., Toh, H. and Miyata, T. (2005) MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33, 511-518. doi:10.1093/nar/gki198
[27] Cosic, I. (1997) The Resonant Recognition Model of Macromolecular Bioreactivity, Theory and Application. Birkhauser Verlag, Berlin.
[28] Hu, W. (2011) Receptor binding specificity and origin of 2009 H1N1 pandemic influenza virus. Natural Science, 3, 234-248.
[29] Cover, T.A. and Thomas, J.A. (1991) Elements of Information Theory. John Wiley and Sons, New York. doi:10.1002/0471200611
[30] MacKay, D. (2003) Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge.
[31] Bogs, J., Veits, J., Gohrbandt, S., Hundt, J., Stech, O., et al. (2010) Highly pathogenic H5N1 influenza viruses carry virulence determinants beyond the polybasic hemagglutinin cleavage site. PLoS ONE, 5, Article ID e11826. doi:10.1371/journal.pone.0011826
[32] Gohrbandt, S., Veits, J., Hundt, J., Bogs, J., Breithaupt, A., Teifke, J.P., Weber, S., Mettenleiter, T.C. and Stech, J. (2011) Amino acids adjacent to the haemagglutinin cleavage site are relevant for virulence of avian influenza viruses of subtype H5. Journal of General Virology, 92, 51-59. doi:10.1099/vir.0.023887-0
[33] Stevens, J., Blixt, O., Tumpey, T.M., Taubenberger, J.K., Paulson, J.C. and Wilson, I.A. (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science, 312, 404-410. doi:10.1126/science.1124513
[34] Wang, W., Lu, B., Zhou, H., Suguitan, A.L. Jr., Cheng, X., Subbarao, K., Kemble, G. and Jin, H. (2010) Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/ 1203/2004 vaccine virus in ferrets. Journal of Virology, 84, 6570-6577. doi:10.1128/JVI.00221-10
[35] Auewarakul, P., Suptawiwat, O., Kongchanagul, A., et al. (2007) An avian influenza H5N1 virus that binds to a human-type receptor. Journal of Virology, 81, 9950-9955. doi:10.1128/JVI.00468-07
[36] Yamada, S., Suzuki, Y., Suzuki, T., Le, M.Q., Nidom, C.A., et al. (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to humantype receptors. Nature, 444, 378-382. doi:10.1038/nature05264
[37] Neumann, G., Chen, H., Gao, G.F., Shu, Y.-L. and Kawaoka, Y. (2010) H5N1 influenza viruses: Outbreaks and biological properties. Cell Research, 20, 51-61. doi:10.1038/cr.2009.124
[38] Ayora-Talavera, G., Shelton, H., Scull, M.A., Ren, J., Jones, I.M., et al. (2009) Mutations in H5N1 influenza virus hemagglutinin that confer binding to human tra- cheal airway epithelium. PLoS ONE, 4, Article ID e7836. doi:10.1371/journal.pone.0007836
[39] Gambaryan, A., Tuzikov, A., Pazynina, G., Bovin, N., Balish, A. and Klimov, A. (2006) Evolution of the receptor binding phenotype of influenza a (H5) viruses. Virology, 344, 432-438. doi:10.1016/j.virol.2005.08.035
[40] Scalera, N.M. and Mossad, S.B. (2009) The first pandemic of the 21st century: a review of the 2009 pandemic variant influenza a (H1N1) virus. Postgraduate Medicine, 121, 43-47. doi:10.3810/pgm.2009.09.2051
[41] Maurer-Stroh, S., Lee, R.T., Eisenhaber, F., Cui, L., Phuah, S.P. and Lin, R.T. (2010) A new common mutation in the hemagglutinin of the 2009 (H1N1) influenza A virus. PLoS Currents Influenza, 1, 162. doi:10.1371/currents.RRN1162
[42] Barr, I.G., Cui, L., Komadina, N., Lee, R.T., Lin, R.T., Deng, Y., Caldwell, N., Shaw, R. and Maurer-Stroh, S. (2010) A new pandemic influenza A(H1N1) genetic variant predominated in the winter 2010 influenza season in Australia, New Zealand and Singapore. Euro Surveill, 15, 19692.
[43] Stevens, J., Blixt, O., Chen, L.M., Donis, R.O., Paulson, J.C. and Wilson, I.A. (2008) Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. Journal of Molecular Biology, 381, 1382-1394. doi:10.1016/j.jmb.2008.04.016
[44] Fereidouni, S.R., Beer, M., Vahlenkamp, T., and Starick, E. (2009) Differentiation of two distinct clusters among currently circulating influenza A(H1N1) viruses. Euro Surveill, 14, 19409.
[45] Hu, W. (2010) Subtle differences in receptor binding specificity and gene sequences of the 2009 pandemic H1N1 influenza virus. Advances in Bioscience and Biotechnology, 1, 305-314. doi:10.4236/abb.2010.14040
[46] Hu, W. (2011) New mutational trends in the HA protein of 2009 H1N1 pandemic influenza virus from May 2010 to February 2011. Natural Science, 3, 379-387.
[47] Long, J.X., Peng, D.X., Liu, Y.L., Wu, Y.T. and Liu, X.F. (2008) Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus Genes, 36, 471-478. doi:10.1007/s11262-007-0187-8
[48] Hatta, M., Hatta, Y., Kim, J.H., Watanabe, S., Shinya, K., et al. (2007) Growth of H5N1 influenza a viruses in the upper respiratory tracts of mice. PLoS Pathog, 3, Article ID e133. doi:10.1371/journal.ppat.0030133
[49] Sung, J.C., van Wynsberghe A.W., Amaro, R.E., Li, W.W. and McCammon, J.A. (2010) Role of secondary sialic acid binding sites in influenza N1 neuraminidase. Journal of the American Chemical Society, 132, 2883-2885. doi:10.1021/ja9073672
[50] Hu, W. (2010) Host markers and correlated mutations in the overlapping genes of influenza viruses: M1, M2; NS1, NS2; and PB1, PB1-F2. Natural Science, 2, 1225-1246. doi:10.4236/ns.2010.211150
[51] Hu, W. (2010) Correlated mutations in the four influenza proteins essential for viral RNA synthesis, host adaptation, and virulence: NP, PA, PB1, and PB2. Natural Science, 2, 1138-1147. doi:10.4236/ns.2010.210141

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.