Biosynthesis of Ethanol and Hydrogen by Glycerol Fermentation Using Escherichia coli
Nida Chaudhary, Michael O. Ngadi, Benjamin K. Simpson, Lamin S. Kassama
.
DOI: 10.4236/aces.2011.13014   PDF    HTML     9,702 Downloads   22,030 Views   Citations

Abstract

Production of high value products from glycerol via anaerobic fermentation is of utmost importance for the biodiesel industry. The microorganism Escherichia coli (E. coli) K12 was used for fermentation of glycerol. The effects of glycerol concentration and headspace conditions on the cell growth, ethanol and hydrogen production were investigated. A full factorial experimental design with 3 replicates was conducted in order to test these factors. Under the three headspace conditions tested, the increase of glycerol concentration accelerated glycerol fermentation. The yields of hydrogen and ethanol were the lowest when glycerol concentration of 10 g/L was used. The maximum production of hydrogen was observed with an initial glycerol concentration of 25 g/L at a final concentration of hydrogen was 32.15 mmol/L. This study demonstrated that hydrogen production negatively affects cell growth. Maximum ethanol yield was obtained with a glycerol concentration of 10 g/L and was up to 0.40 g/g glycerol under membrane condition headspace. Statistical optimization showed that optimal conditions for hydrogen production are 20 g/L initial glycerol with initial sparging of the reactor headspace. The optimal conditions for ethanol production are 10 g/L initial glycerol with membrane.

Share and Cite:

N. Chaudhary, M. Ngadi, B. Simpson and L. Kassama, "Biosynthesis of Ethanol and Hydrogen by Glycerol Fermentation Using Escherichia coli," Advances in Chemical Engineering and Science, Vol. 1 No. 3, 2011, pp. 83-89. doi: 10.4236/aces.2011.13014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. M. Schenk, S. R. Thomas-Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse and B. Hankamer. “Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production,” Bioengineering Research, Vol. 1, No. 1, 2008, pp. 20-43.
[2] S. S. Yazdani and R. Gonzalez, “Anaerobic Fermentation of Glycerol: A Path to Economic Viability for the Biofu-els Industry,” Current Opinion in Biotechnology, Vol. 18, No. 3, 2007, pp. 213-219. doi:10.1016/j.copbio.2007.05.002
[3] M. McCoy, “Glycerin Surplus,” Chemical & Engineering News, Vol. 84, No. 6, 2006, p. 7. doi:10.1021/cen-v084n006.p007a
[4] T. Willke and K. D. Vorlop, “Industrial Bioconversion of Renewable Resources as an Alternative to Conventional Chemistry,” Applied Microbiology and Biotechnology, Vol. 66, No. 2, 2004, pp. 131-142. doi:10.1007/s00253-004-1733-0
[5] G. Durnin, J. Clomburg, Z. Yeates, P. J. J. Alvarez, K. Zygourakis, P. Campbell and R. Gonzalez. “Understand-ing and Harnessing the Microaerobic Metabolism of Glycerol in Escherichia coli,” Biotechnology and Bioen-gineering, Vol. 103, No. 1, 2008, pp. 148-161. doi:10.1002/bit.22246
[6] J. Nielsen, J. Villadsen and G. Liden. “Bioreaction Engi-neering Principles,” Kluwer Academic/Plenum Publishers, New York, 2003, pp. 60-73.
[7] K. S. Tyson, J. Bozell, R. Wallace, E. Peterson and L. Moens, “Biomass Oil Analysis: Research Needs and Reco- mmendations,” Technical Report, National Renewable En-ergy Laboratory, US Department of Energy. NREL/ TP-510-34796, 2004.
[8] I. Booth, “Glycerol and Methylglyoxal Metabolism,” In: F. C. Neidhardt, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger, Eds., Escherichia coli and Salmo-nella: Cellular and Molecular Biology, ASM Press, Washington D.C., 2005. www.ecosal.org
[9] O. M. Bouvet, P. Lenormand, E. Ageron, and P. A. Gri-mont, “Taxonomic Diversity of Anaerobic Glycerol Dis-similation in the Enterobacteriaceae,” Research Microbi-ology, Vol. 146, No. 4, 1995, pp. 279-290. doi:10.1016/0923-2508(96)81051-5
[10] H. Hu and T. K. Wood, “An Evolved Escherichia Coli Strain for Prooducing Hydrogen and Ethanol from Glyc-erol,” Biochemical and Biophysical Research Communi-cations, Vol. 391, No. 1, 2010, pp. 1033-1038. doi:10.1016/j.bbrc.2009.12.013
[11] G. Sabourin-Provost and P. C. Hallenbeck, “High Yield Conversion of a Crude Glycerol Fraction from Biodiesel Production to Hydrogen by Photofermentation,” Biore-source Technology, Vol. 100, No. 14, 2009, pp. 3513-3517. doi:10.1016/j.biortech.2009.03.027
[12] W. Parawira, “Biotechnological Production of Biodiesel Fuel Using Biocatalysed Transesterification: A Review,” Critical Review. Biotechnology, Vol. 29, No. 2, 2009, pp. 82-93. doi:10.1080/07388550902823674
[13] B. Katryniok, S. Paul, M. Capron and F. Dumeignil, “Towards the Sustainable Production of Acrolein by Glycerol Dehydration, ChemSusChem, Vol. 2, No. 8, 2009, pp. 719-730. doi:10.1002/cssc.200900134
[14] T. Maeda, V. Sanchez-Torres and T. K. Wood, “Enhanced Hydrogen Production from Glucose by Metabolically Engineered Escherichia Coli,” Applied Microbiology and Biotechnology, Vol. 77, No. 4, 2007, pp. 879-890. doi:10.1007/s00253-007-1217-0
[15] Z.-X. Wang, J. Zhuge, H. Fang and B. A. Prior, “Glycerol Production by Microbial fermentation: A Review,” Bio-technology Advances, Vol. 19, No. 3, 2001, pp. 201-223. doi:10.1016/S0734-9750(01)00060-X
[16] G. L. Zhang, B. B. Ma, X. L. Xu, C. Li and L. W. Wang, “Fast Conversion of Glycerol to 1,3-Propanediol by a New Strain of Klebsiella Pneumonia,” Biochemical En-gineering Journal, Vol. 37, No. 3, 2007, pp. 256-260. doi:10.1016/j.bej.2007.05.003
[17] B. B. Ma, X. L. Xu, G. L. Zhang, L. W. Wang, M. Wu and C. Li, “Microbial Production of 1,3-Propanediol by Klebsiella Pneumoniae XJPD-Li Under Different Aeration Strategies,” Applied Biochemistry and Biotechnology, Vol. 152, No. 1, 2009, pp. 127-134. doi:10.1007/s12010-008-8220-5
[18] T, Homann, C. Tag, H. Biebl, W. D. Deckwer and B. Schink, “Fermentation of Glycerol to 1,3-Propanediol by Klebsiella and Citrobacter Strains,” Applied Microbiol-ogy and Biotechnology, Vol. 33, No. 2, 1990, pp. 121- 126. doi:10.1007/BF00176511
[19] C. W. Forsberg, “Production of 1,3-Propanediol from Glycerol by Clostridium-Acetobutylicum and Other Clos-tridium Species,” Applied and Environmental Microbiol-ogy, Vol. 53, No. 4, 1987, pp. 639-643.
[20] A. Murarka, Y. Dharmadi, S. S. Yazdani and R. Gonzalez, “Fermentative Utilization of Glycerol by Escherichia coli and Its Implications for the Production of Fuels and Chemicals,” Applied and Environmental Microbiology, Vol. 74, No. 4, 2008, pp. 1124-1135. doi:10.1128/AEM.02192-07
[21] Y. Dharmadi, A. Murarka and R. Gonzalez, “Anaerobic Fermentation of Glycerol by Escherichia coli: A New Platform for Metabolic Engineering,” Biotechnology and Bioengineering, Vol. 94, No. 5, 2006, pp. 821-829. doi:10.1002/bit.21025
[22] S. S. Yazdani and R. Gonzalez, “Engineering Escherichia coli for the Efficient Conversion of Glycerol to Ethanol and Co-products,” Metabolic Engineering, Vol. 10, No. 6, 2008, pp. 340-351. doi:10.1016/j.ymben.2008.08.005
[23] A, J, Byrd, K. K. Pant and R. B. Gupta, “Hydrogen Pro-duction from Glycerol by Reforming in Supercritical Wa-ter Over Ru/Al2O3 Catalyst,” Fuel, Vol. 87, No. 13-14, 2008, pp. 2956-2960. doi:10.1016/j.fuel.2008.04.024
[24] M. M. Zhu, P. D. Lawman and D. C. Cameron, “Improving 1,3-Propanediol Production from Glycerol in a Metabolically Engineered Escherichia coli by Reducing Accumula-tion of sn-Glycerol-3-Phosphate,” Biotechnology Progress, Vol. 18, No. 4, 2002, pp. 694-699. doi:10.1021/bp020281+
[25] T. Ito, Y. Nakashimada, K. Senba, T. Matsui and N. Nishio, “Hydrogen and Ethanol Production from Glycerol-Containing Wastes Discharged after Biodiesel Manufacturing Process,” Journal of Bioscience and Bio-engineering, Vol. 100, No. 3, 2005, pp. 260-265. doi:10.1263/jbb.100.260

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.