[1]
|
Huber, N. and Sommerfeld, M. (1994) Characterization of the Cross-Sectional Particle Concentration Distribution in Pneumatic Conveying Systems. Powder Technology, 79, 191-210. http://dx.doi.org/10.1016/0032-5910(94)02823-0
|
[2]
|
Tsuji, Y. and Morikawa, Y. (1982) LDV Measurements of an Air-Solid Two-Phase Flow in a Horizontal Pipe. Journal of Fluid Mechanics, 120, 385-409. http://dx.doi.org/10.1017/S002211208200281X
|
[3]
|
Ozgoren, M., Pinar, E., Sahin, B. and Akilli, H. (2011) Comparison of Flow Structures in the Downstream Region of a Cylinder and Sphere. International Journal of Heat and Fluid Flow, 32, 1138-1146. http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.08.003
|
[4]
|
Kumara, W.A.S., Elseth, G., Halvorsen, B.M. and Melaaen, M.C. (2010) Comparison of Particle Image Velocimetry and Laser Doppler Anemometry Measurement Methods Applied to the Oil-Water Flow in Horizontal Pipe. Flow Measurement and Instrumentation, 21, 105-117. http://dx.doi.org/10.1016/j.flowmeasinst.2010.01.005
|
[5]
|
Ristic, S., Ilic, J., Cantrak, D., Ristic, O. and Jankovic, N. (2012) Estimation of Laser-Doppler Anemometry Measuring Volume Displacement in Cylindrical Pipe Flow. Thermal Science, 16, 1027-1042. http://dx.doi.org/10.2298/TSCI1204027R
|
[6]
|
Durst, F., Kikura, H., Lekakis, I., Jovanovic, J. and Ye, Q. (1996) Wall Shear Stress Determination from Near-Wall Mean Velocity Data in Turbulent Pipe and Channel Flows. Experiments in Fluids, 20, 417-428. http://dx.doi.org/10.1007/BF00189380
|
[7]
|
Azimian, M., Lichti, M. and Bart, H.-J. (2014) Investigation of Particulate Flow in a Channel by Application of CFD, DEM and LDA/PDA. The Open Chemical Engineering Journal, 8, 1-11. http://dx.doi.org/10.2174/1874123101408010001
|
[8]
|
Schlüter, T. and Merzkirch, W. (1996) PIV Measurements of the Time-Averaged Flow Velocity Downstream of Flow Conditioners in a Pipeline. Flow Measurement and Instrumentation, 7, 173-179. http://dx.doi.org/10.1016/S0955-5986(96)00016-7
|
[9]
|
Xiong, W., Kalkühler, K. and Merzkirch, W. (2003) Velocity and Turbulence Measurements Downstream of Flow Conditioners. Flow Measurement and Instrumentation, 14, 249-260. http://dx.doi.org/10.1016/S0955-5986(03)00031-1
|
[10]
|
Spearman, E., Sattary, J. and Reader-Harris, M. (1996) Comparison of Velocity and Turbulence Profiles Downstream of Perforated Plate Flow Conditioners. Flow Measurement and Instrumentation, 7, 181-199. http://dx.doi.org/10.1016/S0955-5986(96)00013-1
|
[11]
|
Frattolillo, A. and Massarotti, N. (2002) Flow Conditioners Efficiency a Comparison Based on Numerical Approach. Flow Measurement and Instrumentation, 13, 1-11. http://dx.doi.org/10.1016/S0955-5986(02)00017-1
|
[12]
|
Manshoor, B., Nicolleau, F. and Beck, S. (2011) The Fractal Flow Conditioner for Orifice Plate Flow Meters. Flow Measurement and Instrumentation, 22, 208-214. http://dx.doi.org/10.1016/j.flowmeasinst.2011.02.003
|
[13]
|
Gordeev, S., Groschel, F., Heinzel, V., Hering, W. and Stieglitz, R. (2014) Numerical Study of the Flow Conditioner for the IFMIF Liquid Lithium Target. Fusion Engineering and Design, 89, 1751-1757. http://dx.doi.org/10.1016/j.fusengdes.2013.12.010
|
[14]
|
Liu, C. and Shen, Y.M. (2009) A Three-Dimensional Solid-Liquid Two-Phase Turbulence Model with the Effect of Vegetation in Non-Orthogonal Curvilinear Coordinates. Science in China Series G: Physics, Mechanics and Astronomy, 52, 1062-1073. http://dx.doi.org/10.1007/s11433-009-0136-8
|