[1]
|
Hou, Y.Q., Zhang, H., Zhang, H. and Zhang, L.Y. (2008) An Improved Adaptive Image Denoising Model Based on Total Variation. Journal of Northwest University (Natural Science Edition), 38, 371-373.
|
[2]
|
Guo, X.L., Wu, C.S., et al. (2011) Improved Adaptive Image Denoising Total Variation Regularization Model. Journal of WUT (Information &Management Engineering), 33, 200-202.
|
[3]
|
Peng, L., Fang, H., Li, G.Q. and Liu, Z.W. (2012) Remote-Sensing Image Denoising Using Partial Differential Equations and Auxiliary Images as Priors. IEEE Geoscience and Remote Sensing Letters, 9, 358-362.
http://dx.doi.org/10.1109/LGRS.2011.2168598
|
[4]
|
Zheng, M.J. and Xiao, P.Y. (2010) Analysis of a New Variational Model for Multiplicative Noise Removal. Journal of Mathematical Analysis and Applications, 362, 415-426. http://dx.doi.org/10.1016/j.jmaa.2009.08.036
|
[5]
|
Shih, Y., Rei, C. and Wang, H. (2009) A Novel PDE Based Image Restoration: Convection-Diffusion Equation for Image Denoising. Journal of Computational and Applied Mathematics, 231, 771-779.
http://dx.doi.org/10.1016/j.cam.2009.05.001
|
[6]
|
Rudin, L., Lions, P.L. and Osher S. (2003) Multiplicative Denoising and Deblurring: Theory and Algorithms. Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, New York, 103-119.
http://dx.doi.org/10.1007/0-387-21810-6_6
|
[7]
|
Aubert, G. and Aujol, F. (2008) A Variational Approach to Removing Multiplicative Noise. SIAM Journal on Applied Mathematics, 68, 925-946. http://dx.doi.org/10.1137/060671814
|
[8]
|
Huang, Y.-M., Ng, M.K. and Wen, Y.-W. (2009) A New Total Variation Method for Multiplicative Noise Removal. SIAM Journal on Imaging Sciences, 2, 20-40. http://dx.doi.org/10.1137/080712593
|
[9]
|
Hu, X.G. and Lou, Y.F. (2014) A Novel Total Variational Model for Gamma Multiplicative Noise Removal. Journal of Sichuan University (Engineering Science Edition), 46, 59-65.
|
[10]
|
Shi, J. and Osher, S. (2008) A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model. SIAM Journal on Imaging Sciences, 1, 294-321. http://dx.doi.org/10.1137/070689954
|
[11]
|
Rodrigues, I.C. and Sanches, J.M.R. (2011) Convex Total Variation Denoising of Poisson Fluorescence Confocal Images Anisotropic Filtering. IEEE Transactions on Image Processing, 20, 146-160.
http://dx.doi.org/10.1109/TIP.2010.2055879
|
[12]
|
Bioucas-Dias, J.M. and Figueiredo, M.A.T. (2010) Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization. IEEE Transactions on Image Processing, 19, 1720-1730.
http://dx.doi.org/10.1109/TIP.2010.2045029
|
[13]
|
Afonso, M. and Sanches, J.M. (2015) Image Reconstruction under Multiplicative Speckle Noise Using Total Variation. Contents List at Science Direct, 15, 200-213.
|
[14]
|
Eckstein, J. and Bertsekas, D. (1992) On the Douglas-Rachford Splitting Method and the Proximal Point Algorithm for Maximal Monotone Operators. Mathematical Programming, 55, 293-318. http://dx.doi.org/10.1007/BF01581204
|
[15]
|
Bioucas, J. and Figueiredo, M. (2010) Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization. IEEE Transactions on Image Processing, 19, 1720-1730. http://dx.doi.org/10.1109/TIP.2010.2045029
|
[16]
|
Yin, W., Osher, S., Goldfarb, D. and Drabon, J. (2008) Bregman Iterative Algorithms for -Minimization with Applications to Compressed Sensing. SIAM Journal on Imaging Sciences, 1, 143-168.
http://dx.doi.org/10.1137/070703983
|
[17]
|
Bonnans, J. and Jean, C.G. (2006) Numerical Optimization: Theoretical and Practical Aspects. Springer Press.
|
[18]
|
Seabra, J. and Sanches, J. (2008) Modeling Log-Compressed Ultrasound Images for Radio Frequency Signal Recovery. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, 20-25 August 2008, 426-429. http://dx.doi.org/10.1109/iembs.2008.4649181
|
[19]
|
Cheng, W.B. and Cheng, J. (2011) Image Processing and Analysis. Science Press, Beijing.
|
[20]
|
Hao, Y. and Xu, J.L. (2014) An Effective Dual Method for Multiplicative Noise Removal. Journal of Visual Communication and Image Representation, 25, 306-312. http://dx.doi.org/10.1016/j.jvcir.2013.11.004
|
[21]
|
Chen, H.Z., Song, J.P. and Tai, X.C. (2009) A Dual Algorithm for Minimization of the LLT Model. Advances in Computational Mathematics, 31, 115-130. http://dx.doi.org/10.1007/s10444-008-9097-0
|
[22]
|
Chambole, A. (2004) An Algorithm for Total Variation Minimization and Applications. Journal of Mathematical Imaging and Vision, 20, 133-146. http://dx.doi.org/10.1023/B:JMIV.0000011321.19549.88
|
[23]
|
Zheng, M.J. and Xiao, P.Y. (2011) A Variational Model to Remove the Multiplicative Noise in Ultrasound Images. Journal of Mathematical Imaging and Vision, 39, 62-74. http://dx.doi.org/10.1007/s10851-010-0225-3
|
[24]
|
Grimmett, G. (1986) Probability: An Introduction. Oxford University Press, Oxford.
|
[25]
|
Zheng, J.M. and Zhu, W. (2000) Numerical Calculation Method. Chongqing University Press, Chongqing.
|
[26]
|
Byne, C.L. (2012) Alternating Minimization as Sequential Unconstrained Minimizations: A Survey. Journal of Optimization Theory and Applications, 156, 554-566.
|
[27]
|
Lv, X.G., Le, J., Huang, J. and Jun, L. (2013) A Fast High-Order Total Variation Minimization Method for Multiplicative Noise Removal. Mathematical Problems in Engineering, 2013, Article ID: 834035.
http://dx.doi.org/10.1155/2013/834035
|