[1]
|
Sophianopoulos, D.S. (2013) Stability Analysis of a Single-Degree-of-Freedom Mechanical Model with Distinct Critical Points: I. Bifurcation Theory Approach. World Journal of Mechanics, 3, 62-81. http://dx.doi.org/10.4236/wjm.2013.31005
|
[2]
|
Woodcock, A.E.R. and Poston, T. (1974) A Geometrical Study of the Elementary Catastrophes. Springer, New York. http://dx.doi.org/10.1007/BFb0068967
|
[3]
|
Stewart, I.A. (1980) Catastrophe Theory and Equations of State: Conditions for a Butterfly Singularity. Mathematical Proceedings of the Cambridge Philosophical Society, 88, 429-449. http://dx.doi.org/10.1017/S0305004100057789
|
[4]
|
Gilmore, R. (1981) Catastrophe Theory for Scientists and Engineers. Dover, New York.
|
[5]
|
Theocaris, P.S. (1984) Instability of Cantilever Beams with Non-Linear Elements: Butterfly Catastrophe. International Journal of Mechanical Sciences, 26, 265-275. http://dx.doi.org/10.1016/0020-7403(84)90047-X
|
[6]
|
Steindl, H. and Troger, A. (1991) Nonlinear Stability and Bifurcation Theory. Springer, New York.
|
[7]
|
Pershin, K.Vl. (1992) The Butterfly Catastrophe and Mesophase Stability in an External Field. Physics Letters A, 161, 510-516. http://dx.doi.org/10.1016/0375-9601(92)91083-4
|
[8]
|
Deng, C.-G. (1994) Equations of Bifurcation Sets of Three-Parameter Catastrophes and Application in Imperfection Sensitivity Analysis. International Journal of Engineering Science, 32, 1811-1822. http://dx.doi.org/10.1016/0020-7225(94)90110-4
|
[9]
|
Lignos, X.A., Parke, G.A.R., Harding, J.E. and Kounadis, A.N. (2002) A Comprehensive Catastrophe Theory for Non-Linear Buckling of Simple Systems Exhibiting Fold and Cusp Catastrophes. International Journal of Numerical Methods in Engineering, 54, 175-193. http://dx.doi.org/10.1002/nme.416
|
[10]
|
Lignos, X., Ioannidis, G. and Kounadis, A.N. (2003) Non-Linear Buckling of Simple Models with Tilted Cusp Catastrophe. International Journal of Nonlinear Mechanics, 38, 1163-1172. http://dx.doi.org/10.1016/S0020-7462(02)00061-6
|
[11]
|
Lengyel, A. and You, Z. (2004) Bifurcations of SDOF Mechanisms Using Catastrophe Theory. International Journal of Solids and Structures, 41, 559-568. http://dx.doi.org/10.1016/j.ijsolstr.2003.09.024
|
[12]
|
Raftoyiannis, I.G., Constantakopoulos, T.G., Michaltsos, G.T. and Kounadis, A.N. (2006) Dynamic Buckling of a Simple Geometrically Imperfect Frame Using Catastrophe Theory. International Journal of Mechanical Sciences, 48, 1021-1030. http://dx.doi.org/10.1016/j.ijmecsci.2006.05.010
|
[13]
|
Sophianopoulos, D.S. (2007) Bifurcations and Catastrophes of a Two-Degrees-of-Freedom Nonlinear Model Simulating the Buckling and Postbuckling of Rectangular Plates. Journal of the Franklin Institute, 344, 463-488. http://dx.doi.org/10.1016/j.jfranklin.2006.02.012
|
[14]
|
Wagon, S. (2010) Mathematica® in Action: Problem Solving Through Visualization and Computation. Springer, New York. http://dx.doi.org/10.1007/978-0-387-75477-2
|