Calculations for Density of Quark Core Consisting of Mono Flavored Closely Packed Quarks inside Neutron Star

Abstract

The attempt has been taken to calculate the density of stars possessing quark matter core using sphere packing concept of crystallography. The quark matter has been taken as solid in nature as predicted in references 36 and 37, and due to immense gravitational pressure at the core of the star the densest packing of quarks as spheres has been assumed to calculate the packing fraction Φ, thus the density ρ of the matter. Three possible types of pickings—mono-sized sphere packing, binary sphere packing and ternary sphere packing, have been worked out using three possible types of quark matter. It has been concluded that no value about the ρ of quark matter can be calculated using binary and ternary packing conditions and for mono-sized packing condition different flavor quark matters of different values in the density have been calculated using results from the experiments done by HI, ZEUS, L3 and CDF Collaborations about the radius limit of quark. For example, for u quark matter ρ ranges from 4.0587 × 1048 - 7.40038 × 1048 MeV/c2 cm3 using results of L3 Collaboration, for s quark matter 15.91794 × 1048 - 17.6866 × 1048 MeV/c2 cm3, etc.

Share and Cite:

Dar, J. , Singh, P. and Swaroop, R. (2015) Calculations for Density of Quark Core Consisting of Mono Flavored Closely Packed Quarks inside Neutron Star. International Journal of Astronomy and Astrophysics, 5, 258-266. doi: 10.4236/ijaa.2015.54029.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Chandrashekhar, S. (1931) The Maximum Mass of Ideal White Dwarfs. Astrophysical Journal, 74, 81.
[2] Potehin, A.Y. (2011) The Physics of Neutron Stars.
http://arxiv.org/pdf/1102.5735.pdf
[3] Srinivasan, G. (2002) The Maximum Mass of Neutron Stars. The Astronomy and Astrophysics Review, 11, 67-96.
http://dx.doi.org/10.1007/s001590200016
[4] Jahangir, A.D. (2014) Mass Limit of Neutron Star. International Journal of Astronomy and Astrophysics, 4, 414-418.
http://dx.doi.org/10.4236/ijaa.2014.42036
[5] Wald, R.M. (1997) Gravitational Collapse and Cosmic Censorship.
http://arxiv.org/abs/gr-qc/9710068
[6] Backer, D.C. (1976) Pulsar Average Wave Forms and Hollow-Cone Beam Models. Astrophysical Journal, 209, 895-907.
http://dx.doi.org/10.1086/154788
[7] Schafner, J. and Mishustin, I.N. (1996) Hyperon-Rich Matter in Neutron Stars. Physical Review C, 53, 1416.
[8] Miller, M.C. (2004) Introduction to Neutron Stars. University of Maryland, College Park.
[9] Villian, L. and Haensel, P. (2008) Astron. and Astrophys, 444, 539.
[10] Farhi, E. and Jaffe, R.L. (1984) Strange Matter. Physical Review D, 30, 2379-2390.
http://dx.doi.org/10.1103/PhysRevD.30.2379
[11] Haensel, P., Potekhin, A.Y. and Yakovlev, D.G. (2007) Neutron Stars. Springer, Berlin.
http://dx.doi.org/10.1007/978-0-387-47301-7
[12] Oppenheimer, J. R. and Volkoff, G. M. (1939) On Massive Neutron Cores. APS Journals, 55, 374.
[13] Drae, J.J., Marshall, H.L., Dreizler, S., et al. (2002) Is RX J185635-375 a Quark Star? Astrophysical Journal, 572, 996-1001.
http://arxiv.org/abs/astro-ph/0204159 http://dx.doi.org/10.1086/340368
[14] Chan, T.C., Cheng, K.S., Haro, T., Lau, H.K., Lin, L.M., Suen, W.M. and Tian, X.L. (2009) Could the Compact Remnant of SN 1987A Be a Quark Star? Astrophysical Journal, 695, 732-746.
http://dx.doi.org/10.1088/0004-637X/695/1/732
[15] O’Toole, P.I. and Hudson, T.S. (2011) New High-Density Packings of Similarly Sized Binary Spheres. The Journal of Physical Chemistry C, 115, 19037-19040.
http://dx.doi.org/10.1021/jp206115p
[16] Weber, F., et al. (1994) Strange-Matter Stars. In: Proceedings: Strangeness and Quark Matter, World Scientific, Singapore, 87.
[17] Hales, T.C. (2005) A Proof of the Kepler Conjecture. Annals of Mathematics, 162, 1065-1185.
http://dx.doi.org/10.1088/0954-3899/33/1/001
[18] Zong, C. (2002) From Deep Holes to Free Planes. Bulletin of the American Mathematical Society, 39, 533-555.
http://dx.doi.org/10.1090/S0273-0979-02-00950-3
[19] Shapiro, S.L. and Teukolsky, S.A. (2008) Black Holes, White Dwarfts and Neutron Stars: The Physics of Compact Objects. Wiley, New York.
[20] Filion, L., Marechal, M., van Oorschot, B., Pelt, D., Smallenburg, F. and Dijkstra, M. (2009) Efficient Method for Predicting Crystal Structures at Finite Temperature: Variable Box Shape Simulations. Physical Review Letters, 103, Article ID: 188302.
[21] Kummerfeld, J.K., Hudson, T.S. and Harrowell, P. (2008) The Densest Packing of AB Binary Hard-Sphere Homogeneous Compounds across All Size Ratios. Journal of Physical Chemistry B, 112, 10773-10776.
http://dx.doi.org/10.1021/jp804953r
[22] Filion, L. and Dijkstra, M. (2009) Prediction of Binary Hard-Sphere Crystal Structures. Physical Review E, 79, Article ID: 046714.
http://dx.doi.org/10.1103/physreve.79.046714
[23] Torquato, S. and Jiao, Y. (2010) Robust Algorithm to Generate a Diverse Class of Dense Disordered and Ordered Sphere Packings via Linear Programming. Physical Review E, 82, Article ID: 061302.
http://dx.doi.org/10.1103/physreve.82.061302
[24] Lattimer, J.M. and Prakesh, M. (2004) The Physics of Neutron Stars. Science, 304, 536-542.
http://arxiv.org/abs/astro-ph/0405262 http://dx.doi.org/10.1126/science.1090720
[25] Baym, G. and Pethick, C. (1979) Physics of Neutron Stars. Annual Review of Astronomy and Astrophysics, 17, 415-443.
http://dx.doi.org/10.1146/annurev.aa.17.090179.002215
[26] Yao, W.M., et al. (2006) Review of Particle Physics: Neutrino Mass, Mixing, and Flavor Change. Journal of Physics G, 33, 1-1232.
http://dx.doi.org/10.1088/0954-3899/33/1/001
[27] Hopkins, A.B. and Stillinger, F.H. (2012) Densest Binary Sphere Packings. Physical Review E, 85, Article ID: 021130.
http://dx.doi.org/10.1103/physreve.85.021130
[28] Nave, R. (2008) Quarks. HyperPhysics. Georgia State University, Department of Physics and Astronomy, Atlanta.
[29] Halzen, F., Krein, G. and Natale, A.A. (1993) Relating the QCD Pomeron to an Effective Gluon Mass. Physical Review D, 47, 295.
http://dx.doi.org/10.1103/PhysRevD.47.295
[30] Cornwall, J.M. and Soni, A. (1983) Glueballs as Bound States of Massive Gluons. Physics Letters B, 120, 431-435.
http://dx.doi.org/10.1016/0370-2693(83)90481-1
[31] Yndurain, F. (1995) Limits on the Mass of the Gluon. Physics Letters B, 345, 524-526.
http://dx.doi.org/10.1016/0370-2693(94)01677-5
[32] Yu, M. and Xu, R.X. (2011) Toward an Understanding of Thermal X-Ray Emission of Pulsars. Astroparticle Physics, 34, 493-502.
http://dx.doi.org/10.1016/j.astropartphys.2010.10.017
[33] Dai, S. and Xu, R.X. (2012) Quark-Cluster Stars: Hints from the Surface.
http://arxiv.org/pdf/1201.3759.pdf
[34] ZEUS Collaboration (2004) Search for Contact Interactions, Large Extra Dimensions and Finite Quark Radius in ep Collisions at HERA. Physics Letters B, 591, 23-41. http://dx.doi.org/10.1016/j.physletb.2004.03.081
[35] Truemper, J.E., Burwitz, V., Haberl, F. and Zavlin, V.E. (2004) The Puzzles of RX J1856.5-3754: Neutron Star or Quark Star? Nuclear Physics B Proceedings Supplements, 132, 560-565.
http://dx.doi.org/10.1016/j.nuclphysbps.2004.04.094
[36] Chekanov, S., Derrick, M. and Krakauer, D. (2003) Argonne National Laboratory, Chicago (And Others); Deutsches Elektronen-Synchrotron (DESY), Hamburg; ZEUS Collaboration, IAEA, INIS, 35032556.
[37] Oerter, R. (2006) The Theory of Almost Everything: The Standard Model. Penguin Group, London.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.