[1]
|
Burr, I.W. (1942) Cumulative Frequency Functions. The Annals of Mathematical Statistics, 13, 215-232. http://dx.doi.org/10.1007/s10463-011-0342-9
|
[2]
|
Singh, S. and Maddala, G. (1976) A Function for the Size Distribution of Income. Econometrica, 44, 963-970. http://dx.doi.org/10.1007/s10985-005-2970-y
|
[3]
|
Park, S.Y. and Bera, A.K. (2007) Maximum Entropy Income Densities with an Application to the U.S. Personal Income Data. Working Paper, University of Illinois, Urbana-Champaign. http://dx.doi.org/10.1007/s11634-008-0025-4
|
[4]
|
Park, S.Y. and Bera, A.K. (2009) Maximum Entropy Autoregressive Conditional Heteroskedasticity Model. Journal of Econometrics, 150, 219-230. http://dx.doi.org/10.1007/s10463-009-0239-z
|
[5]
|
Papalexiou, S.M. and Koutsoyiannis, D. (2012) Entropy Based Derivation of Probability Distributions: A Case Study to Daily Rainfall. Advances in Water Resources, 45, 51-57. http://dx.doi.org/10.1007/s12561-009-9000-7
|
[6]
|
McDonald, J.B. (1984) Some Generalized Functions for the Size Distribution of Income. Econometrica: Journal of the Econometric Society, 52, 647-663. http://dx.doi.org/10.1007/s10255-011-0093-7
|
[7]
|
Ferriani, F. (2015) Traders and Time: Who Moves the Market? Studies in Economics and Finance, 32, 74-97. http://dx.doi.org/10.1016/j.jmva.2005.03.002
|
[8]
|
Girard, S. and Guillou, A. (2015) Reduced-Bias Estimator of the Conditional Tail Expectation of Heavy-Tailed Distributions. In: Editor, Ed., Mathematical Statistics and Limit Theorems, Springer International Publishing, 105-123. http://dx.doi.org/10.3150/bj/1137421639
|
[9]
|
Streftaris, G., Waters, H.R. and Stott, A.D. (2015) The Effect of Model Uncertainty on the Pricing of Critical Illness Insurance. Annals of Actuarial Science, 9, 108-133.
|
[10]
|
Ducey, M.J. and Gove, J.H. (2015) Size-Biased Distributions in the Generalized Beta Distribution Family, with Applications to Forestry. Forestry, 88, 143-151. http://dx.doi.org/10.1006/jmva.2001.2012
|
[11]
|
Brouers, F. (2014) Statistical Foundation of Empirical Isotherms. Open Journal of Statistics, 4, 687-701. http://dx.doi.org/10.4236/ojs.2014.49064
|
[12]
|
Brouers, F. and Al-Musawi, T.J. (2015) On the Optimum Use of Isotherm Model for the Characterization of Biosorption of Lead onto Algae. Journal of Molecular Liquids, 212, 46-51. http://dx.doi.org/10.1016/j.molliq.2015.08.054
|
[13]
|
Brouers, F. and Sotolongo-Costa, O. (2006) Generalized Fractal Kinetics in Complex Systems (Application to Biophysics and Biotechnology). Physica A: Statistical Mechanics and Its Applications, 368, 165-175. http://dx.doi.org/10.1016/j.physa.2005.12.062
|
[14]
|
Hamissa, A.M.B., Brouers, F., Mahjoub, B. and Seffen, M. (2007) Adsorption of Textile Dyes Using Agave americana (L.) Fibres: Equilibrium and Kinetics Modelling. Adsorption Science and Technology, 25, 311-325. http://dx.doi.org/10.1260/026361707783432533
|
[15]
|
Ncibi, M.C., Mahjoub, B., Seffen, M., Brouers, F. and Gaspard, S. (2009) Sorption Dynamic Investigation of Chromium (VI) onto Posidonia oceanic Fibres: Kinetic Modelling Using New Generalized Fractal Equation. Biochemical Engineering Journal, 46, 141-146. http://dx.doi.org/10.1016/j.bej.2009.04.022
|
[16]
|
Figaro, S., Avril, J.P., Brouers, F., Ouensanga, A. and Gaspard, S. (2009) Adsorption Studies of Molasse’s Wastewaters on Activated Carbon: Modelling with a New Fractal Kinetic Equation and Evaluation of Kinetic Models. Journal of Hazardous Materials, 161, 649-656. http://dx.doi.org/10.1016/j.jhazmat.2008.04.006
|
[17]
|
Hamissa, A.B., Brouers, F., Ncibi, M.C. and Seffen, M. (2013) Kinetic Modeling Study on Methylene Blue Sorption onto Agave americana Fibers: Fractal Kinetics and Regeneration Studies. Separation Science and Technology, 48, 2834-2842. http://dx.doi.org/10.1080/01496395.2013.809104
|
[18]
|
Debord, J., Bollinger, J.C., Bordas, F., Harel, M. and Dantoine, T. (2013) Microcalorimetric Study of the Inhibition of Butyrylcholinesterase by Sodium Arsenite and Zinc Chloride: Use of a Fractal Kinetic Model. Thermochimica Acta, 561, 49-53. http://dx.doi.org/10.1016/j.tca.2013.03.027
|
[19]
|
Kyzas, G.Z., Deliyanni, E.A. and Lazaridis, N.K. (2014) Magnetic Modification of Microporous Carbon for Dye Adsorption. Journal of Colloid and Interface Science, 430, 166-173. http://dx.doi.org/10.1016/j.jcis.2014.05.049
|
[20]
|
Brouers, F. (2014) The Fractal (BSf) Kinetics Equation and Its Approximations. Journal of Modern Physics, 5, 1594-1598. http://dx.doi.org/10.4236/jmp.2014.516160
|
[21]
|
Pereira, L.M. (2010) Fractal Pharmacokinetics. Computational and Mathematical Methods in Medicine, 11, 161-184. http://dx.doi.org/10.1080/17486700903029280
|
[22]
|
Weron, K. and Kotulski, M. (1997) On the Equivalence of the Parallel Channel and the Correlated Cluster Relaxation models. Journal of Statistical Physics, 88, 1241-1256. http://dx.doi.org/10.1007/BF02732433
|
[23]
|
Brouers, F. and Sotolongo-Costa, O. (2005) Relaxation in Heterogeneous Systems: A Rare Events Dominated Phenomenon. Physica A: Statistical Mechanics and Its Applications, 356, 359-374. http://dx.doi.org/10.1016/j.physa.2005.03.029
|
[24]
|
Abubakar, M., Aliyu, A.B. and Ahmad, N. (2015) Flexural Strength Analysis of Dense and Porous Sintered Clay Using Weibull Probability Distribution. Applied Mechanics and Materials, 761, 347-351. http://dx.doi.org/10.4028/www.scientific.net/AMM.761.347
|
[25]
|
Tu, J.W., Guo, D.L., Mei, S.T., Jiang, H.C. and Li, X.P. (2015) Three-Parameter Weibull Distribution Model for Tensile Strength of GFRP Bars Based on Experimental Tests. Materials Research Innovations, 19, S5-1191-S5-1196. http://dx.doi.org/10.1179/1432891714z.0000000001276
|
[26]
|
Bütikofer, L., Stawarczyk, B. and Roos, M. (2015) Two Regression Methods for Estimation of a Two-Parameter Weibull Distribution for Reliability of Dental Materials. Dental Materials, 31, e33-e50. http://dx.doi.org/10.1016/j.dental.2014.11.014
|
[27]
|
Nadler, D.L. (2015) Developing a Weibull Model Extension to Estimate Cancer Latency Times. Doctoral Dissertation, State University of New York at Albany, Albany.
|
[28]
|
Goutelle, S., Maurin, M., Rougier, F., Barbaut, X., Bourguignon, L., Ducher, M. and Maire, P. (2008) The Hill Equation: A Review of Its Capabilities in Pharmacological Modelling. Fundamental and Clinical Pharmacology, 22, 633-648. http://dx.doi.org/10.1111/j.1472-8206.2008.00633.x
|
[29]
|
Hill Keller, F., Schröppel, B. and Ludwig, U. (2015) Pharmacokinetic and Pharmacodynamics Considerations of Antimicrobial Drug Therapy in Cancer Patients with Kidney Dysfunction. World Journal of Nephrology, 4, 330-344. http://dx.doi.org/10.5527/wjn.v4.i3.330
|
[30]
|
Chou, T.C. (1976) Derivation and Properties of Michaelis-Menten Type and Hill Type Equations for Reference Ligands. Journal of Theoretical Biology, 59, 253-276. http://dx.doi.org/10.1016/0022-5193(76)90169-7
|
[31]
|
Bhaskaran, S., Umesh, P. and Nair, A.S. (2015) Hill Equation in Modeling Transcriptional Regulation. In: Singh, V. and Dhar, P.K., Eds., Systems and Synthetic Biology, Springer, Dordrecht, 77-92.http://dx.doi.org/10.1007/978-94-017-9514-2_5
|
[32]
|
Criado, M.N., Civera, M., Martínez, A. and Rodrigo, D. (2015) Use of Weibull Distribution to Quantify the Antioxidant Effect of Stevia rebaudiana on Oxidative Enzymes. LWT-Food Science and Technology, 60, 985-989. http://dx.doi.org/10.1016/j.lwt.2014.10.041
|
[33]
|
Oral, F., Ekmekçi, I. and Onat, N. (2015) Weibull Distribution for Determination of Wind Analysis and Energy Production. World Journal of Engineering, 12, 215-220. http://dx.doi.org/10.1260/1708-5284.12.3.215
|
[34]
|
Brouers, F., Sotolongo, O., Marquez, F. and Pirard, J.P. (2005) Microporous and Heterogeneous Surface Adsorption Isotherms Arising from Levy Distributions. Physica A: Statistical Mechanics and Its Applications, 349, 271-282. http://dx.doi.org/10.1016/j.physa.2004.10.032
|
[35]
|
Ncibi, M.C., Altenor, S., Seffen, M., Brouers, F. and Gaspard, S. (2008) Modelling Single Compound Adsorption onto Porous and Non-Porous Sorbents Using a Deformed Weibull Exponential Isotherm. Chemical Engineering Journal, 145, 196-202. http://dx.doi.org/10.1016/j.cej.2008.04.001
|
[36]
|
Yuhn, K.H., Kim, S.B. and Nam, J.H. (2015) Bubbles and the Weibull Distribution: Was There an Explosive Bubble in US Stock Prices before the Global Economic Crisis? Applied Economics, 47, 255-271. http://dx.doi.org/10.1080/00036846.2014.969824
|
[37]
|
Sornette, D. (2003) Critical Phenomena in Natural Sciences. 2nd Edition, Chap. 14, Springer, Heidelberg.
|
[38]
|
Reinyi, A. (1970) Probability Theory. North-Holland Publishing Company, Amsterdam.
|
[39]
|
Tsallis, C. (1988) Possible Generalization of Boltzmann-Gibbs Statistics. Journal of Statistical Physics, 52, 479-487. http://dx.doi.org/10.1007/BF01016429
|
[40]
|
Tsallis, C. (2009) Nonadditive Entropy and Nonextensive Statistical Mechanics—An Overview after 20 Years. Brazilian Journal of Physics, 39, 337-356. http://dx.doi.org/10.1590/S0103-97332009000400002
|
[41]
|
Kapur, J. and Kesavan, H. (1992) Entropy Optimization Principles with Applications. Academic Press, Waltham. http://dx.doi.org/10.1007/978-94-011-2430-0_1
|
[42]
|
Wu, X. (2003) Calculation of Maximum Entropy Densities with Application to Income Distribution. Journal of Econometrics, 115, 347-354. http://dx.doi.org/10.1016/S0304-4076(03)00114-3
|
[43]
|
Rathie, P.N. and Da Silva, S. (2008) Shannon, Lévy, and Tsallis: A Note. Applied Mathematical Sciences, 2, 1359-1363.
|
[44]
|
Kafri, O. (2009) The Distributions in Nature and Entropy Principle. arXiv:0907.4852.
|
[45]
|
Papalexiou, S.M. and Koutsoyiannis, D. (2011) Entropy Maximization, p-Moments and Power-Type Distributions in Nature. European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 03-08 April 2011, European Geosciences Union, EGU2011-6884.
|
[46]
|
Mahmoud, M.R. and El Ghafour, A.S.A. (2013) Shannon Entropy for the Generalized Feller-Pareto (GFP) Family and Order Statistics of GFP Subfamilies. Applied Mathematical Sciences, 7, 3247-3253.
|
[47]
|
Peterson, J., Dixit, P.D. and Dill, K.A. (2013) A Maximum Entropy Framework for Nonexponential Distributions. Proceedings of the National Academy of Sciences of the United States of America, 110, 20380-20385. http://dx.doi.org/10.1073/pnas.1320578110
|
[48]
|
Visser, M. (2013) Zipf’s Law, Power Laws and Maximum Entropy. New Journal of Physics, 15, Article ID: 043021. http://dx.doi.org/10.1088/1367-2630/15/4/043021
|
[49]
|
Freundlich, U. (1906) Uber Die Adsorption in Losungen. Journal of physical chemistry, 57, 385-470.
|
[50]
|
Kopelman, R. (1988) Fractal Reaction Kinetics. Science, 241, 1620-1626. http://dx.doi.org/10.1126/science.241.4873.1620
|
[51]
|
Savageau, M.A. (1995) Michaelis-Menten Mechanism Reconsidered: Implications of Fractal Kinetics. Journal of Theoretical Biology, 176, 115-124. http://dx.doi.org/10.1006/jtbi.1995.0181
|
[52]
|
van den Broek, J. and Nishiura, H. (2009) Using Epidemic Prevalence Data to Jointly Estimate Reproduction and Removal. The Annals of Appliedstatistics, 3, 1505-1520. http://dx.doi.org/10.1214/09-aoas270
|
[53]
|
Verhulst, P.F. (1845) Nouveaux Mémoires de l’Académie des Sciences, des Arts et des Beaux Arts de Belgique. Vol. 18.
|
[54]
|
Ausloos, M. and Dirickx, M. (Eds.) (2006) The Logistic Map and the Route to Chaos: From the Beginnings to Modern Applications. Springer Science and Business Media, Berlin. http://dx.doi.org/10.1007/3-540-32023-7
|
[55]
|
Havriliak, S. and Negami, S. (1967) A Complex Plane Representation of Dielectric and Mechanical Relaxation Processes in Some Polymers. Polymer, 8, 161-210. http://dx.doi.org/10.1016/0032-3861(67)90021-3
|
[56]
|
Langmuir, I. (1918) The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40, 1361-1403. http://dx.doi.org/10.1021/ja02242a004
|
[57]
|
Sips, R. (1948) The Structure of a Catalyst Surface. The Journal of Chemical Physics, 16, 490-495. http://dx.doi.org/10.1063/1.1746922
|
[58]
|
Jurlewicz, A. and Weron, K. (1999) A General Probabilistic Approach to the Universal Relaxation Response of Complex Systems. Cellular and Molecular Biology Letters, 4, 55-86.
|
[59]
|
Stanislavsky, A. and Weron, K. (2013) Is There a Motivation for a Universal Behaviour in Molecular Populations Undergoing Chemical Reactions? Physical Chemistry Chemical Physics, 15, 15595-15601. http://dx.doi.org/10.1039/c3cp52272e
|
[60]
|
Rodriguez, R.N. (1977) A Guide to the Burr Type XII Distributions. Biometrika, 64, 129-134. http://dx.doi.org/10.1093/biomet/64.1.129
|
[61]
|
Brouers, F. (2013) Sorption Isotherms and Probability Theory of Complex Systems. arXiv:1309.5340.
|
[62]
|
Kapur, J.N. (1989) Maximum-Entropy Models in Science and Engineering. John Wiley and Sons, New York.
|
[63]
|
Beck, C. (2002) Non-Additivity of Tsallis Entropies and Fluctuations of Temperature. Europhysics Letters (EPL), 57, 329-333. http://dx.doi.org/10.1209/epl/i2002-00464-8
|
[64]
|
Brouers, F., Sotolongo-Costa, O. and Weron, K. (2004) Burr, Lévy, Tsallis. Physica A: Statistical Mechanics and Its Applications, 344, 409-416. http://dx.doi.org/10.1016/j.physa.2004.06.008
|
[65]
|
Brouers, F. and Sotolongo-Costa, O. (2003) Universal Relaxation in Nonextensive Systems. Europhysics Letters (EPL), 62, 808-814. http://dx.doi.org/10.1209/epl/i2003-00444-0
|
[66]
|
Brouers, F., Sotolongo-Costa, O., Gonzalez, A. and Pirard, J.P. (2005) Entropic Origin of Dielectric Relaxation Universalities in Heterogeneous Materials (Polymers, Glasses, Aerogel Catalysts). Physica Status Solidi (C), 2, 3529-3531. http://dx.doi.org/10.1002/pssc.200461736
|