Cirrus Clouds and Multiple Tropopause Events over Buenos Aires


Lidar measurements of midlatitude cirrus clouds over Buenos Aires, collected between 2002 and 2003 are compared with multiple tropopauses (MT) retrieved from rawinsonde temperature retrievals. Results derived from the rawinsondes display MT events with an annual cycle which are fewest in March. Comparison with lidar observations shows that cirrus clouds are mostly located closely below the first tro-popause, but when cloud top is above the first tropopause, in 25% of cases, the cloud base is not above it, resulting in a cirrus cloud crossing the inter-tropopause region. Compared with the distribution of the whole population of midlatitude cirrus clouds, cross-tropopause cirrus clouds display a similar geometrical thick-ness as inter-tropopause cirrus clouds.

Share and Cite:

S. Lakkis, M. Lavorato, P. Canziani and H. Lacomi, "Cirrus Clouds and Multiple Tropopause Events over Buenos Aires," Atmospheric and Climate Sciences, Vol. 1 No. 3, 2011, pp. 113-119. doi: 10.4236/acs.2011.13013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Gregory, J. M., Hegerl, G. C., Heimann, M., Hewitson, B., Hoskins, B. J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Somerville, R., Stocker, T. F., Whetton, 20 P., Wood, R. A., and Wratt, D.: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climat
[2] Lakkis, S. G; Mario Lavorato; Pablo Canziani (2009), Monitoring cirrus clouds with LIDAR in the Southern Hemisphere: a local study over Buenos Aires. 1. Tropopause heights. Atmos. Res., doi:10.1016/j.atmosres.2008.08.003
[3] Sunilkumar, S. V., and K. Parameswaran (2005), Temperature dependence of tropical cirrus properties and radiative effects, J. Geophys. Res., 110, D13205, doi:10.1029/2004JD005426.
[4] Cantrell, W., and A. Heymsfield (2005), Production of ice in tropospheric clouds: A review, Bull. Am. Meteorol. Soc., 62(7), 2352–2372.
[5] Heymsfield, A. J., and L. M. Miloshevich (2003), Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles, J. Atmos. Sci., 60, 936–956.
[6] Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood and L. Pfister, 1995: Stratosphere- troposphere exchange. Reviews of Geophysics, 33, 403- 439.
[7] Shepherd T. G.: Issues in Stratospheric-tropospheric coupling, J. of the Meteorol. Society of Japan, 80, 769-792, 2002.
[8] Stohl et al.: Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO, J. Geophys. Res, 108(D12), 8516, doi:10.1029/2002JD002490, 2003.
[9] Seidel, D.J and Randel, J. W.: Variability and trends in the global tropopause estimated from radiosonde data, J. Geophys. Res., 111, D21101, doi:10.1029/2006JD007363, 2006.
[10] Lakkis, S. G. and P.O. Canziani, A comparative analysis of the temperature behavior and multiple tropopause e- vents derived from GPS, radiosonde and reanalysis datasets over Argentina, as an example of Southern mid latitudes; Revista de Climatología, Vol. 9 (2009): 1-14 ISSN 1578-8768.
[11] Hoinka, K. P.: Statistics of the global tropopause pressure, Monthly Weather Rev., 126, 3303-3325, 1998.
[12] Reid, G. C. and Gage, K. S.: A relationship between the height of the tropical tropopause and the global angular Gage momentum of the atmosphere, Geophys. Res. Lett., 1, 840–842, 1984.
[13] No?l, V., and M. Haeffelin (2007), Midlatitude cirrus clouds and multiple tropopauses from a 2002–2006 climatology over the SIRTA observatory, J. Geophys. Res., 112, D13206, doi:10.1029/2006JD007753.
[14] McFarquhar, G. M., Heymsfield A. J., Spinhirne J., Hart B., (2000), Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts, J. Atmos. Sci. ,57, 1841–1853.
[15] Garrett, T. J., et al. (2005), Evolution of a Florida cirrus anvil, J. Atmos. Sci., 62, 2352–2372.
[16] Rossow, W. B., and L. C. Garder (1993), Cloud detection using satellite measurements of infrared and visible radiances for ISCCP, J. Clim., 6, 2341– 2369.
[17] Naud, N., M. Haeffelin, P. Muller, Y. Morille, and A. Delaval (2004), Assessment of MISR and MODIS cloud top heights through comparison with a back-scattering lidar at SIRTA, Geophys. Res. Lett., 31, L04114, doi:10.1029/2003GL018976.
[18] Daloze, J.-F., and M. Haeffelin (2005), Validation of SAFNWC/MSG cloud top height using ground-based lidar and radar measurements, in Visiting Scientist Report, CMS Lannion.
[19] Chiriaco, M., H. Chepfer, V. No?l, A. Delaval, M. Haeffelin, P. Dubuisson, and P. Yang (2004), Improving retrievals of cirrus cloud particle size coupling lidar and three-channel radiometric techniques, Mon. Weather Rev., 132, 1684–1700.
[20] Sassen, K. (1991), The polarization lidar technique for cloud research: A review and current assessment, Bull. Am. Meteorol. Soc., 72, 1848–1866.
[21] Wang, Z., and K. Sassen (2001), Cloud type and macrophysical property retrieval using multiple remote sensors, J. Appl. Meteorol., 40, 1665–1682.
[22] No?l, V., H. Chepfer, M. Haeffelin, and Y.Morille (2006), Classification of ice crystal shapes in midlatitude ice clouds from three years of lidar observations over the SIRTA observatory, J. Appl. Meteorol., 63(11), 2978– 2991.
[23] WMO (1957), Definition of the tropopause, WMO Bull., 6, 136.
[24] Shapiro, M. A. (1980), Turbulent mixing within tropo- pause folds as a mechanism for the exchange of chemical contituents between the stratosphere and troposphere, J. Atmos. Sci., 37, 994–1004.
[25] Bischoff SA, Canziani PO, Yuchechen, AE (2007): The tropopause at southern extra tropical latitudes: Argentina operational rawinsonde climatology.Int. J. Climatol., 27:189-209.
[26] Angell, J. K., and J. Korshover (1974), Quasi-biennial and long-term fluctuations in tropopause pressure and temperature, and the relation to stratospheric water vapor content, Mon. Weather Rev., 102, 29–34.
[27] Protat, A., M. Haeffelin, A. Armstrong, Y. Morille, J. Pelon, J. Delano?, and D. Bouniol (2006), Impact of conditional sampling and instrumental limitations on the statistics of cloud properties derived from cloud radar and lidar at SIRTA, Geophys. Res. Lett., 33, L11805, doi:10.1029/ 2005GL025340.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.