Room-Temperature Humidity Sensing Using Graphene Oxide Thin Films


In this article, we report on a room-temperature humidity sensing device using graphene oxide (GO) thin films synthesized by chemical exfoliation. Changes in the device conductivity are measured for varying relative humidity in the experimental chamber. Experiments are carried out for relative humidity varying from 30% to 95%. We observe a difference in the results obtained for low relative humidity (<50%) and high relative humidity (>50%), and propose a sensing mechanism to explain this difference. Although the sensor exhibits some hysteresis at high relative humidities, a method to “reset” the sensor is also proposed. The sensing device has high sensitivity and fast response time.

Share and Cite:

Naik, G. and Krishnaswamy, S. (2016) Room-Temperature Humidity Sensing Using Graphene Oxide Thin Films. Graphene, 5, 1-13. doi: 10.4236/graphene.2016.51001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Si, S., Li, S., Ming, Z. and Jin, L. (2010) Humidity Sensors Based on ZnO Colloidal Nanocrystal Clusters. Chemical Physics Letters, 493, 288-291.
[2] Zhang, Y., Yu, K., Jiang, D., Zhu, Z., Geng, H. and Luo, L. (2005) Zinc Oxide Nanorod and Nanowire for Humidity Sensor. Applied Surface Science, 242, 212-217.
[3] Yamazoe, N. and Shimizu, Y. (1986) Humidity Sensors: Principles and Applications. Sensors and Actuators, 10, 379-398.
[4] Erol, A., Okur, S., Comba, B., Mermer, O. and Arikan, M. (2010) Humidity Sensing Properties of ZnO Nanoparticles Synthesized by Sol-Gel Process. Sensors and Actuators B: Chemical, 145, 174-180.
[5] Su, P.-G. and Chang, Y.-P. (2008) Low-Humidity Sensor Based on a Quartz-Crystal Microbalance Coated with Polypyrole/Ag/TiO2 Nanoparticles Composite Thin Films. Sensors and Actuators B: Chemical, 129, 915-920.
[6] Zheng, S., Zhu, Y. and Krishnaswamy, S. (2011) Nanofilm-Coated Long-Period Fiber Grating Humidity Sensors for Corrosion Detection in Structural Health Monitoring. SPIE Proceedings, 7983, 79831A-79831A-9.
[7] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
[8] Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191.
[9] Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. and Novoselov, K.S. (2007) Detection of Individual Gas Molecules Adsorbed on Graphene. Nature Materials, 6, 652-655.
[10] Lu, G., Ocola, L.E. and Chen, J. (2009) Reduced Graphene Oxide for Room-Temperature Gas Sensors. Nanotechnology, 20, 445502.
[11] Lu, G., Ocola, L.E. and Chen, J. (2009) Gas Detection Using Low-Temperature Reduced Graphene Oxide Sheets. Applied Physics Letters, 94, Article ID: 083111.
[12] Lange, U., Hirsch, T., Mirsky, V.M. and Wolfbeis, O.S. (2011) Hydrogen Sensor Based on a Graphene-Palladium Nanocomposite. Electrochimica Acta, 56, 3707-3712.
[13] Nomani, M., Shishir, R., Qazi, M., Diwan, D., Shields, V., Spencer, M., Tompa, G.S., Sbrockey, N.M. and Koley, G. (2010) Highly Sensitive and Selective Detection of NO2 Using Epitaxial Graphene on 6H-SiC. Sensors and Actuators B: Chemical, 150, 301-307.
[14] Jeong, H.Y., Lee, D.-S., Choi, H.K., Lee, D.H., Kim, J.-E., Lee, J.Y., Lee, W.J., Kim, S.O. and Choi, S.-Y. (2010) Flexible Room-Temperature NO2 Gas Sensors Based on Carbon Nanotubes/Reduced Graphene Hybrid Films. Applied Physics Letters, 96, Article ID: 213105.
[15] Yoon, H.J., Jun, D.H., Yang, J.H., Zhou, Z., Yang, S.S. and Cheng, M.M.C. (2011) Carbon Dioxide Gas Sensor Using a Graphene Sheet. Sensors and Actuators B: Chemical, 157, 310-313.
[16] Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z. and Sheehan, P.E. (2008) Reduced Graphene Oxide Molecular Sensors. Nano Letters, 8, 3137-3140.
[17] Hu, N., Wang, Y., Chai, J., Gao, R., Yang, Z., Kong, E.S.W. and Zhang, Y. (2012) Gas Sensor Based on P-Phenylenediamine Reduced Graphene Oxide. Sensors and Actuators B: Chemical, 163, 107-114.
[18] Massera, E., Ferrara, V.L.A., Miglietta, M., Polichetti, T., Nasti, I. and Francia, G.D.I. (2011) Gas Sensors Based on Graphene. Chemistry Today, 29, 39-41.
[19] Guo, L., Jiang, H.-B., Shao, R.-Q., Zhang, Y.-L., Xie, S.-Y., Wang, J.-N., Li, X.-B., Jiang, F., Chen, Q.-D., Zhang, T. and Sun, H.-B. (2012) Two-Beam-Laser Interference Mediated Reduction, Patterning and Nanostructuring of Graphene Oxide for the Production of a Flexible Humidity Sensing Device. Carbon, 50, 1667-1673.
[20] Yao, Y., Chen, X., Guo, H., Wu, Z. and Li, X. (2012) Humidity Sensing Behaviors of Graphene Oxide-Silicon Bi-Layer Flexible Structure. Sensors and Actuators B: Chemical, 161, 1053-1058.
[21] Yao, Y., Chen, X., Guo, H. and Wu, Z. (2011) Graphene Oxide Thin Film Coated Quartz Crystal Microbalance for Humidity Detection. Applied Surface Science, 257, 7778-7782.
[22] Hummers, W. and Offeman, R. (1958) Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80, 1339-1339.
[23] Fan, Z.-J., Kai, W., Yan, J., Wei, T., Zhi, L.-J., Feng, J., Ren, Y.-M., Song, L.-P. and Wei, F. (2011) Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. ACS Nano, 5, 191-198.
[24] Cote, L.J., Cruz-Silva, R. and Huang, J. (2009) Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite. Journal of the American Chemical Society, 131, 11027-11032.
[25] Valles, C., David Nunez, J., Benito, A.M. and Maser, W.K. (2012) Flexible Conductive Graphene Paper Obtained by Direct and Gentle Annealing of Graphene Oxide Paper. Carbon, 50, 835-844.
[26] Gomez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M. and Kern, K. (2007) Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Letters, 7, 3499-3503.
[27] Schniepp, H.C., Li, J.-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud’homme, R.K., Car, R., Saville, D.A. and Aksay, I.A. (2006) Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B, 110, 8535-8539.
[28] Jeong, H.-K., Lee, Y.P., Jin, M.H., Kim, E.S., Bae, J.J. and Lee, Y.H. (2009) Thermal Stability of Graphite Oxide. Chemical Physics Letters, 470, 255-258.
[29] Cho, J.-H., Yu, J.-B., Kim, J.-S., Sohn, S.-O., Lee, D.-D. and Huh, J.-S. (2005) Sensing Behaviors of Polypyrrole Sensor under Humidity Condition. Sensors and Actuators B: Chemical, 108, 389-392.
[30] Sun, A., Li, Z., Wei, T., Li, Y. and Cui, P. (2009) Highly Sensitive Humidity Sensor at Low Humidity Based on the Quaternized Polypyrrole Composite Film. Sensors and Actuators B: Chemical, 142, 197-203.
[31] Geng, W., Li, N., Li, X., Wang, R., Tu, J. and Zhang, T. (2007) Effect of Polymerization Time on the Humidity Sensing Properties of Polypyrrole. Sensors and Actuators B: Chemical, 125, 114-119.
[32] Lin, W.-D., Chang, H.-M. and Wu, R.-J. (2013) Applied Novel Sensing Material Graphene/Polypyrrole for Humidity Sensor. Sensors and Actuators B: Chemical, 181, 326-331.
[33] Suri, K., Annapoorni, S., Sarkar, A. and Tandon, R. (2002) Gas and Humidity Sensors Based on Iron Oxidepolypyrrole Nanocomposites. Sensors and Actuators B: Chemical, 81, 277-282.
[34] Anderson, J.H. and Parks, G.A. (1968) The Electrical Conductivity of Silica Gel in the Presence of Adsorbed Water. The Journal of Physical Chemistry, 177, 3662-3668.
[35] De Boer, J. and Van Doorn, A. (1958) Graphite Oxide. V. The Sorption of Water. Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 61, 242-252.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.