Comparison of the Normal, Preperimetric Glaucoma, and Glaucomatous Eyes with Upper-Hemifield Defects Using SD-OCT

Abstract

Purpose: We compared the thickness of circumpapillary retinal nerve fiver layer (cpRNFL) and macular ganglion cell layer with inner plexiform layer (GCL + IPL) using Cirrus HD-OCT (Ver.6.0: Carl Zeiss). Materials and Methods: This study included 12 eyes of normal controls, 10 eyes of preperimetric glaucoma (PPG) with loss of RNFL either in superior or in inferior hemisphere without visual field defects, and 22 eyes of glaucoma eyes with visual field defects restricted to upper hemifield (UHFD: early 10 eyes, severe 12 eyes). The cpRNFL thickness analyzed from disk center by dividing into 12 sectors. The GCL + IPL thickness analyzed from central fovea by dividing into six sectors. Both compared between normal eye group and other 3 groups using the average value of each sectors. Result: The cpRNFL and the GCL + IPL thickness were obviously thin as compared with normal eyes. Conclusion: Even if it is in the state where abnormalities are not detected using the Humphrey field Analyzer, it is suggested that the early structural change of glaucoma has already arisen.

Share and Cite:

Fujimura, F. , Shoji, N. , Hirasawa, K. , Matsumura, K. , Morita, T. and Shimizu, K. (2015) Comparison of the Normal, Preperimetric Glaucoma, and Glaucomatous Eyes with Upper-Hemifield Defects Using SD-OCT. Open Journal of Ophthalmology, 5, 167-173. doi: 10.4236/ojoph.2015.54027.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Quigley, H.A., Dunkelberger, G.R. and Green, W.R. (1989) Retinal Ganglion Cell Atrophy Correlated with Automated Perimetry in Human Eyes with Glaucoma. American Journal of Ophthalmology, 107, 453-464.
[2] Kerrigan-Baumrind, L.A., Quigley, H.A., Pease, M.E., et al. (2000) Number of Ganglion Cells in Glaucoma Eyes Compared with Threshold Visual Field Tests in the Same Persons. Investigative Ophthalmology & Visual Science, 41, 741-748.
[3] Kanamori, A., Nakamura, M., Escano, M.F., et al. (2003) Evaluation of the Glaucomatous Damage on Retinal Nerve Fiber Layer Thickness Measured by Optical Coherence Tomography. American Journal of Ophthalmology, 135, 513-520.
http://dx.doi.org/10.1016/S0002-9394(02)02003-2
[4] Wollstein, G., Ishikawa, H., Wang, J., et al. (2005) Comparison of Three Optical Coherence Tomography Scanning Areas for Detection of Glaucomatous Damage. American Journal of Ophthalmology, 139, 39-43.
http://dx.doi.org/10.1016/j.ajo.2004.08.036
[5] Takagi, S.T., Kita, Y., Yagi, F., et al. (2012) Macular Retinal Ganglion Cell Complex Damage in the Apparently Normal Visual Field of Glaucomatous Eyes with Hemifield Defects. Journal of Glaucoma, 21, 318-325.
http://dx.doi.org/10.1097/IJG.0b013e31820d7e9d
[6] Rao, H.L., Zangwill, L.M., Weinreb, R.N. et al. (2010) Comparison of Different Spectral Domain Optical Coherence Tomography Scanning Areas for Glaucoma Diagnosis. Ophthalmology, 117, 1692-1699.
[7] Huang, J.Y., Pekmezci, M., Mesiwala, N., et al. (2010) Diagnostic Power of Optic Disc Morphology, Peripapillary Retinal Nerve Fiber Layer Thickness, and Macular Inner Retinal Layer Thickness in Glaucoma Diagnosis with Fourier-Domain Optical Coherence Tomography. Journal of Glaucoma, 20, 87-94.
http://dx.doi.org/10.1097/IJG.0b013e3181d787b6
[8] Desatnik, H., Quigley, H.A. and Glovinsky, Y. (1996) Study of Central Retinal Ganglion Cell Loss in Experimental Glaucoma in Monkey Eyes. Journal of Glaucoma, 5, 46-53.
[9] Anderson, D.R. and Patella, V.M. (1990) Automated Static Perimetry. 2nd Edition, St. Louis: Mosby, 121-190.
[10] Tan, O., Li, G., Lu, A.T., et al. (2008) Mapping of Macular Substructures with Optical Coherence Tomography for Glaucoma Diagnosis. Ophthalmology, 115, 949-956.
[11] Tan, O., Chopra, V., Lu, A.T., et al. (2009) Detection of Macular Ganglion Cell Loss in Glaucoma by Fourier-Domain Optical Coherence Tomography. Ophthalmology, 116, 2305-2314.
[12] Lee, J.R., Jeoung, J.W., Choi, J., et al. (2010) Structure-Function Relationships in Normal and Glaucomatous Eyes Determined by Time Domain and Spectral Domain Optical Coherence Tomography. Investigative Ophthalmology & Visual Science, 51, 6424-6430.
http://dx.doi.org/10.1167/iovs.09-5130
[13] Wu, L.L., Suzuki, Y., Kunimatsu, S., et al. (2001) Frequency Doubling Technology and Confocal Scanning Ophthalmoscopic Optic Disc Analysis in Open-Angle Glaucoma with Hemifield Defects. Journal of Glaucoma, 10, 256-260.
http://dx.doi.org/10.1097/00061198-200108000-00002
[14] Curcio, C.A. and Allen, K.A. (1990) Topography of Ganglion Cells in Human Retina. Journal of Comparative Neurology, 300, 5-25.
http://dx.doi.org/10.1002/cne.903000103
[15] Bendschneider, D., Tornow, R.P., Horn, F.K., et al. (2010) Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT. Journal of Glaucoma, 19, 475-482.
http://dx.doi.org/10.1097/IJG.0b013e3181c4b0c7
[16] Budenz, D.L., Anderson, D.R., Varma, R., et al. (2007) Determinants of Normal Retinal Nerve Fiber Layer Thickness Measured by Stratus OCT. Ophthalmology, 114, 1046-1052.
http://dx.doi.org/10.1016/j.ophtha.2006.08.046
[17] Mwanza, J.C., Durbin, M.K., Budenz, D.L., et al. (2012) Glaucoma Diagnostic Accuracy of Ganglion Cell-Inner Plexiform Layer Thickness: Comparison with Nerve Fiber Layer and Optic Nerve Head. Ophthalmology, 119, 1151-1158.
http://dx.doi.org/10.1016/j.ophtha.2011.12.014

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.