[1]
|
Puri, M.L. and Ralescu, D.A. (1986) Fuzzy Random Variables. Journal of Mathematical Analysis and Applications, 114, 409-422. http://dx.doi.org/10.1016/0022-247X(86)90093-4
|
[2]
|
Kisielewicz, M. (1997) Set-Valued Stochastic Integrals and Stochastic Inclusions. Stochastic Analysis and Applications, 15, 780-800. http://dx.doi.org/10.1080/07362999708809507
|
[3]
|
Kim, B.K. and Kim, J.H. (1999) Stochastic Integrals of Set-Valued Processes and Fuzzy Processes. Journal of Mathematical Analysis and Applications, 236, 480-502. http://dx.doi.org/10.1006/jmaa.1999.6461
|
[4]
|
Jung, E.J. and Kim, J.H. (2003) On Set-Valued Stochastic Integrals. Stochastic Analysis and Applications, 21, 401-418.
http://dx.doi.org/10.1081/SAP-120019292
|
[5]
|
Kim, J.H. (2005) On Fuzzy Stochastic Differentials Equations. Journal of the Korean Mathematical Society, 42, 153-169. http://dx.doi.org/10.4134/JKMS.2005.42.1.153
|
[6]
|
Li, S. and Ren, A. (2007) Representation Theorems, Set-Valued and Fuzzy Set-Valued ITO Integral. Fuzzy Sets and Systems, 158, 949-962. http://dx.doi.org/10.1016/j.fss.2006.12.004
|
[7]
|
Malionwski, M.T. and Michta, M. (2011) On Set-Valued Stochastic Integrals and Fuzzy Stochastic Equations. Fuzzy Sets Systems, 177, 1-19. http://dx.doi.org/10.1016/j.fss.2011.01.007
|
[8]
|
Zhang, J., Li, S., Mitoma, I. and Okazaki, Y. (2009) On Set-Valued Stochastic Integrals in an M-Type 2 Banach Space. Journal of Mathematical Analysis and Applications, 350, 216-233. http://dx.doi.org/10.1016/j.jmaa.2008.09.017
|
[9]
|
Zhang, J., Li, S., Mitoma, I. and Okazaki, Y. (2009) On the Solution of Set-Valued Stochastic Differential Equations in M-Type 2 Banach Space. Tohoku Mathematical Journal, 61, 417-440. http://dx.doi.org/10.2748/tmj/1255700202
|
[10]
|
Li, J. and Wang, J. (2012) Fuzzy Set-Valued Stochastic Lebesgue Integral. Fuzzy Sets and Systems, 200, 48-64.
http://dx.doi.org/10.1016/j.fss.2012.01.021
|
[11]
|
Mitoma, I., Okazaki, Y. and Zhang, J. (2010) Set-Valued Stochastic Differential Equations in M-Type 2 Banach Space. Communications on Stochastic Analysis, 4, 215-237.
|
[12]
|
Zhang, J., Mitoma, I. and Okazaki, Y. (2013) Set-Valued Stochastic Integral with Respect to Poisson Process in a Banach Space. International Journal of Approximate Reasoning, 54, 404-417.
|
[13]
|
Fei, W. (2013) Existence and Uniquess for Solutions to Fuzzy Stochastic Differential Equations Driven by Local Martingales under the Non-Lipschtiz Condition. Nolinear Analysis, 76, 202-214.
http://dx.doi.org/10.1016/j.na.2012.08.015
|
[14]
|
Zhang, J. and Qi, J. (2013) Set-Valued Stochastic Integrals with Respect to Finite Variation Processes. Advances in Pure Mathematics, 3, 15-19. http://dx.doi.org/10.4236/apm.2013.39A1003
|
[15]
|
Hu, S. and Papageorgiou, N. (1997) Handbook of Multivalued Analysis, Volume I: Theory. Kluwer Academic Publishers, Boston.
|
[16]
|
Negoito, C. and Ralescu, D. (1975) Applications of Fuzzy Sets to Systems Analysis. Wiley, New York.
http://dx.doi.org/10.1007/978-3-0348-5921-9
|
[17]
|
Kwakernaak, H. (1987) Fuzzy Random Variables, Definition and Theoroems. Information Sciences, 15, 1-29.
http://dx.doi.org/10.1016/0020-0255(78)90019-1
|
[18]
|
Zhang, W., Li, S. and Wang, Z. (2007) Set-Valued Stochastic Process Introduction. Science Press, Beijing. (In Chinese)
|
[19]
|
Charalambos, D.A. and Kim, C.B. (1994) Infinite Dimensional Analysis. Springer-Verlag, Berlin.
|
[20]
|
Li, S., Ogura, Y. and Kreinovich, Y. (2002) Limit Theorems and Applications of Set-valued and Fuzzy Set-Valued Random Variables. 43rd Edition, Kluwer Academic Publishers, Dordrecht.
http://dx.doi.org/10.1007/978-94-015-9932-0
|
[21]
|
Feng, Y. (2001) Fuzzy-Valued Mappings with Finite Variation, Fuzzy-Valued Measures and Fuzzy-Valued Lebesgue-Stieltjes Integrals. Fuzzy Sets and Systems, 2, 227-236. http://dx.doi.org/10.1016/S0165-0114(99)00178-5
|