Microalgae Tolerance to High Concentrations of Carbon Dioxide: A Review
Fadhil M. Salih
DOI: 10.4236/jep.2011.25074   PDF   HTML     10,721 Downloads   22,649 Views   Citations


The increasing concentration of carbon dioxide (CO2) in the atmosphere is considered to be one of the main causes of the global warming problem. Moreover, there is an international movement to reduce the emission of CO2 by imposing different measures such as carbon tax. Biological CO2 fixation has been extensively investigated as part of efforts to solve the global warming problem. Microalgae are fast growing systems that can consume high quantities of CO2 to produce different types of biomass. The efficiency of microalgae is highly related to the concentration of CO2 in the growth atmosphere and the higher the concentration of CO2 the better is the growth and hence productivity. The present review aimed at shedding some light upon microalgal capability to sustain their viability and propagate under high CO2 concentration.

Share and Cite:

F. Salih, "Microalgae Tolerance to High Concentrations of Carbon Dioxide: A Review," Journal of Environmental Protection, Vol. 2 No. 5, 2011, pp. 648-654. doi: 10.4236/jep.2011.25074.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. J. Stepan, R. E. Shockey, T. A. Moe and R. Dorn. “SUBTASK, 2.3-Carbon Dioxide Sequestering Using Microalgal Systems,” U.S. Department of Energy, National Energy Technology Laboratory, 2001.
[2] B. Hileman, “U.S. Urged to Change CO2 Emissions Policy,” Chemical Engineering News, Vol. 70, No. 1, 1992, pp. 16-22. doi:10.1021/cen-v070n008.p016
[3] O. Pulz and W. Gross, “Valuable Products from Biotechnology of Microalgae,” Applied Microbiology and Biotechnology, Vol. 65, No. 3, 2004, pp. 635-648. doi:10.1007/s00253-004-1647-x
[4] Y. Chisti, “Biodiesel from Microalgae,” Biotechnology Advances, Vol. 25, No. 3, 2007, pp. 294-306. doi:10.1016/j.biotechadv.2007.02.001
[5] E. Ono and J. L. Cuello, “Selection of Optimal Microalgae Species for CO2 Sequestration,” Proceedings 2nd Annual Conference on Carbon Sequestration, Alexandria, 2003, pp. 1-7.
[6] Oilgae, “Algae Oil Yield,” 2011. http://www.oilgae.com/algae/oil/yield/yield.html
[7] Biofpr, “The Promise and Challenges of Microalgal-De- rived Biofuels,” 2009. http://www.afdc.energy.gov/afdc/pdfs/microalgal_biofuels_darzins.pdf
[8] J. H. Fike, D. J. Parrish, J. Alwang and J. S. Cundiff, “Challenges for Deploying Dedicated, Large-Scale, Bioenergy Systems in the USA,” Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, Vol. 2, No. 64, 2007, pp. 1-28.
[9] P. Chelf, L. M. Brown and C. E. Wyman, “Aquatic Biomass Resources and Carbon Dioxide,” Biomass and Eioenergy, Vol. 4, No. 3, 1993, pp. 175-183. doi:10.1016/0961-9534(93)90057-B
[10] K. L. Kada, “Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis,” National Renewable Energy Laboratory publications, NREL/TP-510-29417, Golden, CO, 2001. doi:10.2172/783405
[11] J. R. Beneman, D. M. Tillet and J. C. Weissman, “Microalgae Biotechnology,” Trends in Biotechnology, Vol. 5, No. 2, 1987, pp.47-53.
[12] E. S. Kikkinides, R. T. Yang and S. H. Cho, “Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption,” Industrial Engineering Chemistry Research, Vol. 32, No. 11, 1993, pp. 2714-2720. doi:10.1021/ie00023a038
[13] D. Kilowatts, “America’s Most Polluting Power Plants,” Environmental, Integrity Project, National Renewable Energy Laboratory Publications, Washington DC, July 2007.
[14] J. Seckbach, H. Gross and M. B. Nathan, “Growth and Photosynthesis of Cyanidium Caldarium Cultured under Pure CO2,” Israel Journal of Botany, Vol. 20, 1971, pp. 84-90,
[15] N. Hanagata, T. Takeuchi and Y. Fukuju, “Tolerance of Microalgae to High CO2 and High Temperature,” Phytochemistry, Vol. 31, No. 10, 1992, pp. 3345-3348. doi:10.1016/0031-9422(92)83682-O
[16] M. Kodama, H. Ikemoto and S. Miyachi, “A New Species of Highly CO2-Tolreant Fast-Growing Marine Microalga Suitable for High-Density Culture,” Journal of Marine Biotechnology, Vol. 1, No. 1, 1993, pp. 21-25.
[17] S. Miyairi, “CO2 Assimilation in a Thermophilic Cyanobacterium,” Energy Conversion and Management, Vol. 36, No. 6-9, 1995, pp. 763-766. doi:10.1016/0196-8904(95)00116-U
[18] Y. Nakano, K. Miyatake, H. Okuno, K. Hamazaki, S. Takenaka, N. Honami, M. Kiyota, I. Aiga and J. Kondo, “Growth of Photosynthetic Algae Euglena in High CO2 Conditions and Its Photosynthetic Characteristics,” Acta Horticulturae, Vol. 440, No. 9, 1996, pp. 49-54.
[19] H. Nagase, K. Eguchi, K. Yoshihara, K. Hirata and K. Miyamoto, “Improvement of Microalgal NOx Removal in Bubble Column and Airlift Reactors,” Journal of Fermentation and Bioengineering, Vol. 86, No. 4, 1998, pp. 421-423. doi:10.1016/S0922-338X(99)89018-7
[20] K. Yoshihara, H. Nagase, K. Eguchi, K. Hirata and K. Miyamoto, “Biological Elimination of Nitric Oxide and Carbon Dioxide from Flue Gas by Marine Microalga NOA-113 Cultivation in a Long Tubular Photobioreactor,” Journal of Fermentation and Bioengineering, Vol. 82, No. 4, 1996, pp. 351-354. doi:10.1016/0922-338X(96)89149-5
[21] Y. Miura, W. Yamada, K. Hirata, K., Miyamoto and M. Kiyohara, “Stimulation of Hydrogen Production in Algal Cells Grown under High CO2 Concentration and Low Temperature,” Applied Biochemistry and Biotechnology, Vol. 39-40, No. 1, 1993, pp. 753-761. doi:10.1007/BF02919033
[22] H. Matsumoto, N. Shioji, A. Hamasaki, Y. Ikuta, Y. Fukuda, M. Sato, N. Endo and T. Tsukamoto, “Carbon Dioxide Fixation by Microalgae Photosynthesis Using Actual Flue Gas Discharged from a Boiler,” Applied Biochemistry and Biotechnology, Vol. 51-52, No. 1, 1995, 681-692. doi:10.1007/BF02933469
[23] S. Hirata, M. Hayashitani, M. Taya and S. Tone, “Carbon Dioxide Fixation in Batch Culture of Chlorella sp. Using a Photobioreactior with a Sunlight-Collection Device,” Journal of fermentation and bioengineering, Vol. 81, No. 5, 1996, pp. 470-472. doi:10.1016/0922-338X(96)85151-8
[24] S. Hirata, M. Taya and S. Tone, “Characterization of Chlorella Cell Cultures in Batch and Continuos Operations under a Photoautotrophic Condition,” Journal of Chemical Engineering of Japan, Vol. 29, No. 6, 1996, pp. 953-959. doi:10.1252/jcej.29.953
[25] K. Maeda, M. Owada, N. Kimura, L. Omata, and I. Karube, “CO2 Fixation from the Flue Gas on Coalfired Thermal Power Plant by Microalgae,” Energy conversion Management, Vol. 36, No. 6-9, 1995, pp. 717-720. doi:10.1016/0196-8904(95)00105-M
[26] L. E. Graham and L. W. Wilcox, “Algae,” Prentice-Hall, Inc., Upper Saddle River, 2000.
[27] L. M. Brown, “Uptake of Carbon Dioxide from Flue Gas by Microalgae,” Energy Conversion and Management, Vol. 37, No. 6-8, 1996, pp. 1363-1367.
[28] T. M. Sobczuk, F. G. Camacho, F. C. Rubio, F. G. A. Fernandez and E. M. Grima, “Carbon Dioxide Uptake Efficiency by Outdoor Microalgal Cultures in Tubular Airlift Photobioreactors,” Biotechnology and Bioengineering, Vol. 67, No. 4, 2000, pp. 465-475. doi:10.1002/(SICI)1097-0290(20000220)67:4<465::AID-BIT10>3.0.CO;2-9
[29] J. A. Oswald, “Large-Scale Algal Culture Systems (Engineering Aspects),” In: L. J. Borowitzka and M. A. Borowitzka, Eds., Microalgal biotechnology, Cambridge University Press, Cambridge, 1988, pp. 357-395.
[30] P. Tapie and A. Bernard, “Microalgae Production Technical and Economic Evaluations,” Biotechnology and Bioengineering, Vol. 32, No. 7, 1988, pp. 873-885. doi:10.1002/bit.260320705
[31] S. Rados, B. Vaclav and D. Frantisek D, “CO2 Balance in Industrial Cultivation of Algae,” Archives of Hydrobiology, Vol. 46, No. 12, 1975, pp. 297-310.
[32] Y. K. Lee and H. K. Hing, “Supplying CO2 to Photosynthetic Algal Cultures by Diffusion through Gas-Permea- ble Membranes,” Applied Microbiology and Biotechnology, Vol. 31, No. 3, 1989, pp.298-301. doi:10.1007/BF00258413
[33] J. Beardall, S. Beer and J. A. Raven, “Biodiversity of Marine Plants in an Era of Climate Change: Some Predictions Based on Physiological Performance,” Botanica Marina, Vol. 41, No. 1-6, 1998, pp. 113-124.
[34] P. Schippers, M. Lürling and M. Scheffer, “Increase of Atmospheric CO2 Promotes Phytoplankton Productivity,” Ecology Letters, Vol. 7, No. 6, 2004, pp. 446-451. doi:10.1111/j.1461-0248.2004.00597.x
[35] J. K. Ward and B. R. Strain, “Elevated CO2 Studies: Past, Present and Future,” Tree Physiology, Vol. 19, 1999, pp. 211-220.
[36] S. Beer and E. Koch, “Photosynthesis of Marine Microalgae and Seagrasses in Globally Changing CO2 Environments,” Marine Ecology Progress Series, Vol. 141, 1996, pp. 199-204. doi:10.3354/meps141199
[37] J. Flexas, M. Ribas-Carbó, A. Diaz-Espejo, J. Galmés and H. Medrano, “Mesophyll Conductance to CO2: Current Knowledge and Future Prospects,” Plant, Cell and Environment, Vol. 31, No. 5, 2008, pp. 602-621. doi:10.1111/j.1365-3040.2007.01757.x
[38] T. Andersen, F. O. Andersen and O. Pedersen, “Increased CO2 in the Water around Littorella Uniflora Raises the Sediment O2 Concentration,” Aquatic Botany, Vol. 84, No. 4, 2006, pp. 294-300. doi:10.1016/j.aquabot.2005.11.006
[39] T. Andersen and F. O. Andersen, “Effects of CO2 Concentration on Growth of Filamentous Algae and Littorella Uniflora in a Danish Softwater Lake,” Aquatic Botany, Vol. 84, No. 3, 2006, pp. 267-271. doi:10.1016/j.aquabot.2005.09.009
[40] J. E. Kubler, A. M. Johnston and J. A. Raven, “The Effects of Reduced and Elevated CO2 and O2 on the Seaweed Lomentaria Articulate,” Plant, Cell and Environment, Vol. 22, No. 10, 1999, pp. 1303-1310. doi:10.1046/j.1365-3040.1999.00492.x
[41] B. Tisserat, “Influence of Ultra-High Carbon Dioxide Concentrations on Growth and Morphogenesis of Lamiaceae Species in Soil,” Journal of Herbs, Spices & Medicinal Plants, Vol. 9, No. 1, 2002, pp. 81-89. doi:10.1300/J044v09n01_09
[42] Y-S. Yun and J. Moon Park, “Development of Gas Recycling Photobioreactor System for Microalgal Carbon Dioxide Fixation,” Journal Korean Journal of Chemical Engineering, Vol. 14, No. 4, 1997, pp. 297-300. doi:10.1007/BF02706827
[43] L. Yue and W. Chen, “Isolation and Determination of Cultural Characteristics of a New Highly CO2 Tolerant Fresh Water Microalgae,” Energy Conversion and Management, Vol. 46, No. 11-12, 2005, pp. 1868-1876. doi:10.1016/j.enconman.2004.10.010
[44] Y. Watanabe, N. Ohmura and H. Saiki, “Isolation and Determination of Cultural Characteristics of Microalgae Which Functions under CO2 Enriched Atmosphere,” Energy Conversion and Management, Vol. 33, No. 5-8, 1992, pp. 545-552. doi:10.1016/0196-8904(92)90054-Z
[45] Y. Nakano, K. Hamasaki, S. Takenaka, K. Miyatake, A. Tani and I. Aiga, “Adaptation and the Mechanism of Euglena gracilis to High CO2 Conditions,” CELSS Journal, Vol. 8, No. 2, 1995, pp. 7-12.
[46] Y. Yang and K. Gao, “Effects of CO2 Concentrations on the Freshwater Microalgae, Chlamydomonas Reinhardtii, Chlorella Pyrenoidosa and Scenedesmus Obliquus (Chlorophyta),” Journal of Applied Phycology, Vol. 15, No. 5, 2003 , pp. 379-389. doi:10.1023/A:1026021021774
[47] A. Papazia, P. Makridisb, P. Divanachb and K. Kotzabasisa, “Bioenergetic Changes in the Microalgal Photosynthetic Apparatus by Extremely High CO2 Concentrations Induce an Intense Biomass Production,” Physiologia Plantarum, Vol. 132, No. 3, 2008, pp. 338-349. doi:10.1111/j.1399-3054.2007.01015.x
[48] T. Shiraiwa, “Mechanism for the Acclimation of Photosynthetic Machinery to Change in Environmental CO2 Concentration in Eukaryotic Microalgae,” 2005. http://www.biol.tsukuba.ac.jp/~ikawa/shiraiwaHP/hp04/home04E.html
[49] D. O. Hessen, “Excess Carbon in Aquatic Organisms and Ecosystems: Physiological, Ecological, and Evolutionary Implications,” Limnology and Oceanography, Vol. 53, No. 3, 2008, pp. 1685-1696. doi:10.4319/lo.2008.53.4.1685
[50] M. Tsuzuki, M. Gantar, K. Aizawa and S. Miyachi, “Ultrastructure of Dunaliella Tertiolecta Cells Grown under Low and High CO2 Concentrations,” Plant Cell Physiology, Vol. 27, No. 4, 1986, pp. 737-739.
[51] E. W. Becker, “Microalgae: Biotechnology and Microbiology,” Cambridge University Press, Cambridge, 1995.
[52] H. E. Glover and I. Morris, “Photosynthetic Characteristics of Coccoid Marine Cyanobacteria,” Archives of Microbiology, Vol. 129, No. 1, 1981, pp. 42-46. doi:10.1007/BF00417177
[53] D. H. Pope, “Effects of Light Intensity, Oxygen Concentration, and Carbon Dioxide Concentration on Photosynthesis in Algae,” Microbial Ecology, Vol. 2, No. 1, 1975, pp. 1-16. doi:10.1007/BF02010377
[54] Y. C. Jeon, C. W. Cho and Y. S. Yu, “Measurement of Microalgal Photosynthetic Activity Depending on Light Intensity and Quality,” Biochemical Engineering Journal, Vol. 27, No. 2, 2005, pp. 127-131. doi:10.1016/j.bej.2005.08.017
[55] J. Kondo, “Growth of Photosynthetic Algae Euglena in High CO2 Conditions and Its Photosynthetic Characteristics,” Acta Horticulturae, Vol. 440, No. 9, 1996, pp. 49- 54.
[56] H. T. Hsueh, H. Chu and S. T. Yu, “A Batch Study on the Bio-Fixation of Carbon Dioxide in the Absorbed Solution from a Chemical Wet Scrubber by Hot Spring and Marine Algae,” Chemosphere, Vol. 66, No. 5, 2007, pp. 878-886. doi:10.1016/j.chemosphere.2006.06.022
[57] P. J. McGinn, K. E. Dickinson, S. Bhatti, J. Frigon, S. R. Guiot and S. J. B. O’Leary, “Integration of Microalgae Cultivation with Industrial Waste Remediation for Biofuel and Bioenergy Production: Opportunities and Limitations,” Photosynthesis Research, 2011, (in Press). doi:10.1007/s11120-011-9638-0
[58] R. A. Andersen, “Algal Culturing Techniques,” Elsevier Academic Press, Burlington, 2005.
[59] A. P. Carvalho, L. A. Meireles and F. Xavier, “Microalgal Reactors: A Review of Enclosed System Designs and Performances,” Biotechnology Progress, Vol. 22, No. 6, 2006, pp. 1490-1506. doi:10.1002/bp060065r
[60] D. A. Caron, J. C. Goldman and M. R. Dennet, “Effect of Temperature on Growth, Respiration, and Nutrient Regeneration by an Omnivorous Microflagellate,” Applied and Environmental Microbiology, Vol. 52, No. 6, 1986, pp. 1340-1347.
[61] L. Brennan and P. Owend, “Biofuels from Microalgae—A Review of Technologies for Production, Process- ing, and Extractions of Biofuels and Co-Products,” Renewable and Sustainable Energy Reviews, Vol. 14, No. 2, 2010, pp. 557-577. doi:10.1016/j.rser.2009.10.009
[62] A. Dauta, J. Devaux, F. Piquemal and L. Boumnich, “Growth Rate of Four Freshwater Algae in Relation to Light and Temperature,” Hydrobiologia, Vol. 207, No. 1, 1990, pp. 221-226. doi:10.1007/BF00041459

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.