High-Frequency Electric Field Induced Nonlinear Electron Transport in Chiral Carbon Nanotubes

DOI: 10.4236/wjcmp.2015.54030   PDF   HTML   XML   3,855 Downloads   4,388 Views   Citations


We investigate theoretically the high frequency complex conductivity in carbon nanotubes that are stimulated axially by a strong inhomogeneous electric field of the form E(t)=E0+E1cos(ωt). Using the kinetic approach based on Boltzmann’s transport equation with constant relaxation time approximation and the energy spectrum of the electron in the tight-binding approximation, together with Bhatnagar-Gross-Krook collision integral, we predict high-frequency nonlinear effects along the axial and the circumferential directions of the carbon nanotubes that may be useful for the generation of high frequency radiation in the carbon nanotubes.

Share and Cite:

Abukari, S. , Mensah, S. , Rabiu, M. , Adu, K. , Mensah, N. , Twum, A. , Owusu, A. , Dompreh, K. , Mensah-Amoah, P. and Amekpewu, M. (2015) High-Frequency Electric Field Induced Nonlinear Electron Transport in Chiral Carbon Nanotubes. World Journal of Condensed Matter Physics, 5, 294-300. doi: 10.4236/wjcmp.2015.54030.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Radushkevich, L.V. and Lukyanovich, V.M. (1952) The Structure of Carbon Forming in Thermal Decomposition of Carbon Monoxide on an Iron Catalyst. Russian Journal of Physical Chemistry, 26, 88-95. (In Russian)
[2] Oberlin, A., Endo, M. and Koyana, T. (1976) Filamentous Growth of Carbon through Benzene Decomposition. Journal of Crystal Growth, 32, 335-349.
[3] Abrahamson, J., Wiles, P.G. and Rhodes, B. (1999) Structure of Carbon Fibres Found on Carbon Arc Anodes. Carbon, 37, 1873-1875. http://dx.doi.org/10.1016/S0008-6223(99)00199-2
[4] Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
[5] Maksimenko, A.S. and Slepyan, G.Y. (2000) Negative Differential Conductivity in Carbon Nanotubes. Physical Review Letters, 84, 362.
[6] Pennington, G. and Goldsman, N. (2003) Semiclassical Transport and Phonon Scattering of Electrons in Semiconducting Carbon Nanotubes. Physical Review B, 68, Article ID: 045426.
[7] Saito, R., Dresselhaus, G. and Dresselhaus, M.S. (1998) Physical Properties of Carbon Nanotubes. Imperial College Press, London.
[8] Li, H.J., et al. (2005) Multichannel Ballistic Transport in Multiwall Carbon Nanotubes. Physical Review Letters, 95, Article ID: 086601.
[9] Kajiura, H., et al. (2005) Quasi-Ballistic Electron Transport in As-Produced and Annealed Multiwall Carbon Nanotubes. Carbon, 43, 1317-1319.
[10] Kajiura, H., et al. (2004) Quasi-Ballistic Electron Transport in Double-Wall Carbon Nanotubes. Chemical Physics Letters, 398, 476-479.
[11] Bezryadin, A., Verschueren, A.R.M., Tans, S.J. and Dekker, C. (1998) Multiprobe Transport Experiments on Individual Single-Wall Carbon Nanotubes. Physical Review Letters, 80, 4036-4039.
[12] Hsiou, Y.F., Yang, Y.J., Chen, C.D. and Chan, C.H. (2006) Coulomb Blockade Behavior in Individual Multiwalled Carbon Nanotubes. Journal of Vacuum Science & Technology B, 24, 143.
[13] Haruyama, J., Takesue, I. and Sato, Y. (2000) Coulomb Blockade in a Single Tunnel Junction Directly Connected to a Multiwalled Carbon Nanotube. Applied Physics Letters, 77, 2891.
[14] McEuen, P.L., Bockrath, M., Cobden, D.H., et al. (1999) Luttinger-Liquid Behaviour in Carbon Nanotubes. Nature, 397, 598-601.
[15] Shiraishi, M. and Ata, M. (2003) Tomonaga—Luttinger-Liquid Behavior in Single-Walled Carbon Nanotube Networks. Solid State Communications, 127, 215-218.
[16] Kociak, M., Kasumov, A.Y., Guéron, S., Reulet, B., et al. (2001) Superconductivity in Ropes of Single-Walled Carbon Nanotubes. Physical Review Letters, 86, 2416-2419.
[17] Southard, A., Sangwan, V., Cheng, J., et al. (2009) Solution-Processed Single Walled Carbon Nanotube Electrodes for Organic Thin-Film Transistors. Organic Electronics, 10, 1556-1561.
[18] Hong, K., Nam, S., Yang, C., et al. (2009) Solution-Processed Organic Field-Effect Transistors Composed of Poly(4-styrene sulfonate) Wrapped Multiwalled Carbon Nanotube Source/Drain Electrodes. Organic Electronics, 10, 363-367.
[19] Aguirre, C.M., Ternon, C., Paillet, M., Desjardins, P. and Martel, R. (2009) Carbon Nanotubes as Injection Electrodes for Organic Thin Film Transistors. Nano Letters, 9, 1457-1461.
[20] Novak, J.P., Snow, E.S., Houser, E.J., Park, D., Stepnowski, J.L. and McGill, R.A. (2009) Nerve Agent Detection Using Networks of Single-Walled Carbon Nanotubes. Applied Physics Letters, 83, 4026-4028.
[21] Kong, J., Franklin, N.R., Zhou, C.W., et al. (2000) Nanotube Molecular Wires as Chemical Sensors. Science, 287, 622- 625.
[22] Robinson, J.A., Snow, E.S., Badescu, S.C., Reinecke, T.L. and Perkins, F.K. (2006) Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors. Nano Letters, 6, 1747-1751.
[23] Signorelli, R., Ku, D.C., Kassakian, J.G. and Schindall, J.E. (2009) Electrochemical Double-Layer Capacitors Using Carbon Nanotube Electrode Structures. Proceedings of the IEEE, 97, 1837-1847.
[24] Du, C.S. and Pan, N. (2006) High Power Density Supercapacitor Electrodes of Carbon Nanotube Films by Electrophoretic Deposition. Nanotechnology, 17, 5314-5318.
[25] Du, C.S. and Pan, N. (2006) Supercapacitors Using Carbon Nanotubes Films by Electrophoretic Deposition. Journal of Power Sources, 160, 1487-1494.
[26] Zhao, J.J., Buldum, A., Han, J. and Lu, J.P. (2000) First-Principles Study of Li-Intercalated Carbon Nanotube Ropes. Physical Review Letters, 85, 1706-1709.
[27] Udomvech, A., Kerdcharoen, T. and Osotchan, T. (2005) First Principles Study of Li and Li+ Adsorbed on Carbon Nanotube: Variation of Tubule Diameter and Length. Chemical Physics Letters, 406, 161-166.
[28] Chen, J., Liu, Y., Minett, A.I., et al. (2007) Flexible, Aligned Carbon Nanotube/Conducting Polymer Electrodes for a Lithium-Ion Battery. Chemistry of Materials, 19, 3595-3597.
[29] Tang, Z.K., Zhang, L.Y., Wang, N., et al. (2001) Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes. Science, 292, 2462-2465.
[30] Slepyan, G.Y., Maksimenko, S.A., Kalosha, V.P., et al. (1999) Highly Efficient High-Order Harmonic Generation by Metallic Carbon Nanotubes. Physical Review A, 60, R777-R780.
[31] Ferguson, B. and Zhang, X.C. (2002) Materials for Terahertz Science and Technology. Nature Materials, 1, 26-33.
[32] Slepyan, G.Y., Maksimenko, S.A., Kalosha, V.P., Gusakov, A.V. and Herrmann, J. (2001) High-Order Harmonic Generation by Conduction Electrons in Carbon Nanotube Ropes. Physical Review A, 63, Article ID: 053808.
[33] Dragoman, D. and Dragoman, M. (2005) Terahertz Continuous Wave Amplification in Semiconductor Carbon Nanotubes. Physica E, 25, 492-496.
[34] Dragoman, M., Cismaru, A., Hartnagel, H. and Plana, R. (2006) Reversible Metal-Semiconductor Transitions for Microwave Switching Applications. Applied Physics Letters, 88, Article ID: 073503.
[35] Farajian, A.A., Estarjani, K. and Kawazoe, Y. (1999) Nonlinear Coherent Transport through Doped Nanotube Junctions. Physical Review Letters, 82, 5084-5087.
[36] Abukari, S.S., Adu, K.W., Mensah, S.Y., et al. (2013) Rectification Due to Harmonic Mixing of Two Coherent Electromagnetic Waves with Commensurate Frequencies in Carbon Nanotubes. The European Physical Journal B, 86, 106.
[37] Abukari, S.S., Mensah, S.Y., Adu, K.W., et al. (2012) Domain Suppression in the Negative Differential Conductivity Region of Carbon Nanotubes by Applied AC Electric Field. World Journal of Condensed Matter Physics, 2, 274-277.
[38] Abukari, S.S., Mensah, S.Y., Mensah, N.G., Adu, K.A., Rabiu, M. and Twum, A. (2012) High Frequency Conductivity in Carbon Nanotubes. AIP Advances, 2, Article ID: 042178.
[39] Slepyan, G.Y., Maksimenko, S.A., Lakhtakia, A., et al. (1998) Electronic and Electromagnetic Properties of Nanotubes. Physical Review B, 57, 9485-9497.
[40] Slepyanet, G.Y., Maksimenko, S.A., Lakhtakia, A., Yevtushenko, O. and Gusakov, A.V. (1999) Electrodynamics of Carbon Nanotubes: Dynamic Conductivity, Impedance Boundary Conditions, and Surface Wave Propagation. Physical Review B, 60, 17136-17149.
[41] Ignatov, A.A. and Shashkin, V.I. (1987) Bloch Oscillations of Electrons and Instability of Space-Charge Waves in Semiconductor Superlattices. Soviet Physics—JETP, 66, 526-530.
[42] Ryndyk, D.A., Demarina, N.V., Keller, J. and Schomburg, E. (2003) Superlattice with Hot Electron Injection: An Approach to a Bloch Oscillator. Physical Review B, 67, Article ID: 033305.
[43] Bass, F.G. and Tetervov, A.P. (1986) High-Frequency Phenomena in Semiconductor Superlattices. North-Holland, Amsterdam.
[44] Ktitorov, S., Simin, G. and Sindalovskii, V. (1972) Bragg Reflections and the High-Frequency Conductivity of an Electronic Solid-State Plasma. Soviet Physics—Solid State, 13, 1872.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.