[1]
|
Gardner, C.S., Greene, J.M., Kruskal, M.D. and Miura, R.M. (1967) Method for Solving the Korteweg de Vries Equation. Physical Review Letters, 19, 1095-1097. http://dx.doi.org/10.1103/PhysRevLett.19.1095
|
[2]
|
Matveev, V.B. and Salle, M.A. (1991) Darboux Transformations and Solitons. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-662-00922-2
|
[3]
|
Hirota, R. (1971) Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons. Physical Review Letters, 27, 1192-1194. http://dx.doi.org/10.1103/PhysRevLett.27.1192
|
[4]
|
Freeman, N.C. and Nimmo, J.J.C. (1983) Soliton Solutions of the KdV and KP Equations: The Wronskian Technique. Physics Letters A, 95, 1-3. http://dx.doi.org/10.1016/0375-9601(83)90764-8
|
[5]
|
Nimmo, J.J.C. and Freeman, N.C. (1983) A Method of Obtaining the N-Soliton Solution of the Boussinesq Equation in Terms of a Wronskian. Physics Letters A, 95, 4-6. http://dx.doi.org/10.1016/0375-9601(83)90765-X
|
[6]
|
Hu, X.B. and Wang, H.Y. (2006) Construction of dKP and BKP Equations with Self-Consistent Sources. Inverse Problems, 22, 1903-1920. http://dx.doi.org/10.1088/0266-5611/22/5/022
|
[7]
|
Hu, X.B. and Wang, H.Y. (2007) New Type of Kadomtsev-Petviashvili Equation with Self-Consistent Soureces and Its Blinear Bäcklund Transformation. Inverse Problems, 23, 1433-1444. http://dx.doi.org/10.1088/0266-5611/23/4/005
|
[8]
|
Satsuma, J. (1979) A Wronskian Representation of N-Soliton Solutions of Nonlinear Evolution Equations. Journal of the Physical Society of Japan, 46, 359-360. http://dx.doi.org/10.1143/JPSJ.46.359
|
[9]
|
Matveev, V.B. (1992) Generalized Wronskian Formula for Solutions of the KdV Equation: First Applications. Physics Letters A, 166, 205-208. http://dx.doi.org/10.1016/0375-9601(92)90362-P
|
[10]
|
Ma, W.X. (2002) Complexiton Solutions to the Korteweg-de Vries Equation. Physics Letters A, 301, 35-44. http://dx.doi.org/10.1016/S0375-9601(02)00971-4
|
[11]
|
Ma, W.X. (2004) Wronskians, Generalized Wronskians and Solutions to the Korteweg-de Vries Equation. Chaos, Solitons & Fractals, 19, 163-170. http://dx.doi.org/10.1016/S0960-0779(03)00087-0
|
[12]
|
Ma, W.X. and Maruno, K. (2004) Complexiton Solutions of the Toda Lattice Equation. Physica A, 343, 219-237. http://dx.doi.org/10.1016/j.physa.2004.06.072
|
[13]
|
Ma, W.X. and You, Y. (2005) Solving the Korteweg-de Vries Equation by Its Bilinear Form: Wronskian Solutions. Transactions of the American Mathematical Society, 357, 1753-1778. http://dx.doi.org/10.1090/S0002-9947-04-03726-2
|
[14]
|
Ma, W.X. (2005) Complexiton Solutions to Integrable Equations. Nonlinear Analysis: Theory, Methods & Applications, 63, 2461-2471. http://dx.doi.org/10.1016/j.na.2005.01.068
|
[15]
|
Ma, W.X. (2005) Complexiton Solutions of the Korteweg-de Vries Equation with Self-Consistent Sources. Chaos, Solitons & Fractals, 26, 1453-1458. http://dx.doi.org/10.1016/j.chaos.2005.03.030
|
[16]
|
Ma, W.X., Li, C.X. and He, J.S. (2009) A Second Wronskian Formulation of the Boussinesq Equation. Nonlinear Analysis: Theory, Methods & Applications, 70, 4245-4258. http://dx.doi.org/10.1016/j.na.2008.09.010
|
[17]
|
Ablowitz, M.J., Kaup, D.J., Newell, A.C. and Segur, H. (1974) The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems. Studies in Applied Mathematics, 53, 249-315. http://dx.doi.org/10.1002/sapm1974534249
|
[18]
|
Liu, Q.M. (1990) Double Wronskian Solution of the AKNS and Classical Boussinesq Hierarchies. Journal of the Physical Society of Japan, 59, 3520-3527. http://dx.doi.org/10.1143/JPSJ.59.3520
|
[19]
|
Chen, D.Y., Zhang, D.J. and Bo, J.B. (2008) New Double Wronskian Solutions of the AKNS Equation. Science in China Series A: Mathematics, 51, 55-69. http://dx.doi.org/10.1007/s11425-007-0165-6
|
[20]
|
Lou, S.Y. and Hu, X.B. (1997) Infinitely Many Lax Pair and Symmetry Constraints of the KP Equation. Journal of Mathematical Physics, 38, 6407-6427. http://dx.doi.org/10.1063/1.532219
|
[21]
|
Lou, S.Y., Chen, C.L. and Tang, X.Y. (2002) (2 + 1)-Dimensional (M + N)-Component AKNS System: Painlevé Integrability, Infinitely Many Symmetries, Similarity Reductions and Exact Solutions. Journal of Mathematical Physics, 43, 4078-4109. http://dx.doi.org/10.1063/1.1490407
|