Hajós-Property for Direct Product of Groups


We study decomposition of finite Abelian groups into subsets and show by examples a negative answer to the question of whether Hajós-property is inherited by direct product of groups which have Hajós-property.

Share and Cite:

Amin, K. (2015) Hajós-Property for Direct Product of Groups. Advances in Linear Algebra & Matrix Theory, 5, 139-142. doi: 10.4236/alamt.2015.54013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Minkowski, H. (1896) Geometrie der Zahlen. Teubner, Leipzig.
[2] Hajos, G. (1949) Sur la factorsation des groups aeliens. Casopis, 74, 157-162.
[3] Rédei, L. (1965) Die neue Theoreie der endlichen abelschen Gruppen und Verall-geomeinerung des Hauptsatze von Hajós. Acta Mathematica Academiae Scientiarum Hungaricae, 16, 329-373.
[4] De Bruijn, N.G. (1950) On Bases for the Set of Integers. Publicationes, Mathematicae, 232-242.
[5] Amin, K. (2014) Constructing Single-Error-Correcting Codes Using Factorization of Finite Abelian Groups. International Journal of Algebra, 8, 311-315.
[6] Vuza, D.T. (1990-91) Supplementary Sets and Regular Complementary Unending Canons. Perspectives of New Music, 23.
[7] Sands, A.D. (1962) Factorization of Abelian Groups. The Quarterly Journal of Mathematics, 13, 45-54.
[8] Amin, K. (1997) The Hajos-n-Property for finite p-Groups. PUMA, 1-12.
[9] Sands, A.D. (1959) Factorization of Abelian Groups. The Quarterly Journal of Mathematics, 10, 81-91.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.