The Property of a Special Type of Exponential Spline Function ()
Abstract
Approximation theory experienced a long term history. Since 50’ last century, the rise of spline function as well as the advance of calculation promotes the growth of classical approximation theory and makes them develop a profound theory in maths, and application values have shown among the field of scientific calculation and engineering technology and etc. At present, the study of spline function had made a great progress and had a lot of fruits, as for that, the reader could look up the book [1] or [2]. Nevertheless, the research staff pays less attention to exponential spline function, since polynomial spline function is a special case of that, so it is much essential and meaningful for one to explore the nature of exponential spline function.
Share and Cite:
Yang, G. (2015) The Property of a Special Type of Exponential Spline Function.
Advances in Pure Mathematics,
5, 804-807. doi:
10.4236/apm.2015.513074.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
Li, Y.S. (1983) Spline Function and Interpolation. Shanghai Science and Technology Press, Shanghai.
|
[2]
|
Feng, Y.Y., Zeng, F.L. and Deng, J.S. (2013) Spine Function and Approximation Theory. University of Science and Technology of China, Hefei.
|
[3]
|
Unser, M. and Blu, T. (2005) Cardinal Exponential Splines: Part I—Theory and Filtering Algorithms. IEEE Transactions on Signal Processing, 53, 1425-1438. http://dx.doi.org/10.1109/TSP.2005.843700
|
[4]
|
Zhang, G.Q. and Lin, Y.Q. (1987) Lectures on Functional Analysis. Peking University Press, Beijing.
|
[5]
|
Li, Q.Y., Wang, N.C. and Yi, D.Y. (2008) Numerical Analysis. 5th Edition, Tsinghua University Press, Beijing.
|