[1]
|
Frolov, V.P. and Zelnikov, A. (2011) Introduction to Black Hole Physics. Oxford University Press, Oxford. http://dx.doi.org/10.1093/acprof:oso/9780199692293.001.0001
|
[2]
|
Bardeen, J.M., Carter, B. and Hawking, S.W. (1973) The Four Laws of Black Hole Mechanics. Communications in Mathematical Physics, 31, 161-170. http://dx.doi.org/10.1007/BF01645742
|
[3]
|
Bekenstein, J.D. (1980) Black-Hole Thermodynamics. Physics Today, 33, 24-31. http://dx.doi.org/10.1063/1.2913906
|
[4]
|
Meisner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W.H. Freeman & Company, San Francisco.
|
[5]
|
Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford.
|
[6]
|
Susskind, L. and Lindesay, J. (2005) Black Holes, Information and the String Theory Revolution (The Holographic Universe). World Scientific, New Jersey.
|
[7]
|
Susskind, L. (2008) The Black Hole War. Back Bay Books, New York.
|
[8]
|
Horowitz, G.T., Ed. (2012) Black Holes in Higher Dimensions. Cambridge University Press, Cambridge, UK. http://dx.doi.org/10.1017/CBO9781139004176
|
[9]
|
Wheeler, A. (1990) Information, Physics, Quantum: The Search for Links. In: Zurek, W., Ed., Complexity Entropy and the Physics of Information, Addison-Wesley, New York, 3-18.
|
[10]
|
‘tHooft, G. (2015) G. ‘tHooft Asks a Question about General Relativity on ResearchGate, Questions and Answers. October. https://www.researchgate.net/post/In_GR_can_we_always_choose_the_local_speed_of_light_to_be_ everywhere_smaller_that_the_coordinate_speed_of_light_Can_this_be_used_in_a_theory
|
[11]
|
El Naschie, M.S. (2006) Fractal Black Holes and Information. Chaos, Solitons & Fractals, 29, 23-35. http://dx.doi.org/10.1016/j.chaos.2005.11.079
|
[12]
|
El Naschie, M.S. (2015) If Quantum “Wave” of the Universe Then Quantum “Particle” of the Universe: A Resolution of the Dark Energy Question and the Black Hole Information Paradox. International Journal of Astronomy & Astrophysics, 5, 243-247. http://dx.doi.org/10.4236/ijaa.2015.54027
|
[13]
|
El Naschie, M.S. (2015) A Resolution of the Black Hole Information Paradox via Transfinite Set Theory. World Journal of Condensed Matter Physics, 5, 249-260. http://dx.doi.org/10.4236/wjcmp.2015.54026
|
[14]
|
El Naschie, M.S. (2004) A Review of E-Infinity and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236. http://dx.doi.org/10.1016/S0960-0779(03)00278-9
|
[15]
|
Connes, A. (1994) Noncommutative Geometry. Academic Press, San Diego.
|
[16]
|
Levy, S., Ed. (1997) Flavors of Geometry. Cambridge University Press, Cambridge, UK.
|
[17]
|
El Naschie, M.S. (2015) Banach Spacetime-Like Dvoretzky Volume Concentration as Cosmic Holographic Dark Energy. International Journal of High Energy Physics, 2, 13-21. http://dx.doi.org/10.11648/j.ijhep.20150201.12
|
[18]
|
El Naschie, M.S. (2015) Kerr Black Hole Geometry Leading to Dark Matter and Dark Energy via E-Infinity Theory and the Possibility of Nano Spacetime Singularity Reactor. Natural Science, 7, 210-225. http://dx.doi.org/10.4236/ns.2015.74024
|
[19]
|
El Naschie, M.S. (1997) Remarks on Super Strings, Fractal Gravity, Nagasawa’s Diffusion and Cantorian Spacetime. Chaos, Solitons & Fractals, 8, 1873-1886.
|
[20]
|
El Naschie, M.S. (2014) Why E Is Not Equal mc2. Journal of Modern Physics, 5, 743-750. http://dx.doi.org/10.4236/jmp.2014.59084
|