ICESat GLAS Elevation Changes and ALOS PALSAR InSAR Line-of-Sight Changes on the Continuous Permafrost Zone of the North Slope, Alaska

DOI: 10.4236/ijg.2015.610086   PDF   HTML   XML   2,710 Downloads   3,358 Views   Citations


Measuring centimeter-scale and smaller surface changes by satellite-based systems on the periglacial terrains and permafrost zones of the northern hemisphere is an ongoing challenge. We are investigating this challenge by using data from the NASA Ice, Cloud, and land Elevation Satellite Geoscience Laser Altimeter System (ICESat GLAS) and the JAXA Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) on the continuous permafrost zone of the North Slope, Alaska. Using the ICESat GLAS exact-repeat profiles in the analysis of ALOS PALSAR InSAR Line-Of-Sight (LOS) changes, we find evidence of volume scattering over much of the tundra vegetation covered active-layer and surface scattering from river channel/banks (deposition and erosion), from rock outcropping bluffs and ridges. Pingos, ice-cored mounds common to permafrost terrains can be used as benchmarks for assessment of LOS changes. For successful InSAR processing, topographic and tropospheric phase cannot be assumed negligible and must be removed. The presence of significant troposphere phase in short-period repeat interferograms renders stacking ill suited for the task of deriving verifiable centimeter-scale surface deformation phase and reliable LOS changes.

Share and Cite:

Muskett, R. (2015) ICESat GLAS Elevation Changes and ALOS PALSAR InSAR Line-of-Sight Changes on the Continuous Permafrost Zone of the North Slope, Alaska. International Journal of Geosciences, 6, 1101-1115. doi: 10.4236/ijg.2015.610086.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. and Alsdorf, D. (2007) The Shuttle Radar Topography Mission. Reviews of Geophysics, 45, 1944-9208.
[2] Alsdorf, D.E., Smith, L.C. and Melack, J.M. (2001) Amazon Floodplain Water Level Changes Measured with Interferometric SIR-C Radar. IEEE Transactions on Geoscience and Remote Sensing, 39, 423-431.
[3] Treuhaft, R.N., Madsen, S.N., Moghaddam, M. and van Zyl, J.J. (1996) Vegetation Characteristics and Underlying Topography from Interferometric Radar. Radio Science, 31, 1449-1485.
[4] Riedel, B. and Walther, A. (2008) InSAR Processing for the Recognition of Landslides. Advances in Geoscience, 14, 189-194.
[5] Hanssen, R.F., Weckwerth, T.M, Zebker, H.A. and Klees, R. (1999) High-Resolution Water Vapor Mapping from Interferometric Radar Measurements. Science, 283, 1297-1299.
[6] Helz, R.L. (2005) Monitoring Ground Deformation from Space. US Geological Survey, Fact Sheet 2005-3025, Department of Interior, Washington DC.
[7] Bawden, G.W., Sneed, M., Stork, S.V. and Galloway, D.L. (2003) Measuring Human-Induced Land Subsidence from Space. US Geological Survey, Fact Sheet 069-003, Department of Interior, Washington DC.
[8] Joughin, I., Smith, B.E. and Abdalati, W. (2010) Glaciological Advances Made with Interferometric Synthetic Aperture Radar. Journal of Glaciology, 56, 1026-1042.
[9] Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F. and Massonnet, D. (2007) InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. European Space Agency Publications ESTEC, Noordwijk.
[10] Constantinova, G.S. (1978) Permafrost Landscape, 133-135 in Permafrost: Second International Conference, 13-28 July 1973, National Academy of Sciences, Washington DC.
[11] Scheffers, A.M., May, S.M. and Kelletat, D.H. (2015) Chapter 13: Frost and Permafrost as Morphological Agents (Or the Perglacial Domain). In: Scheffers, A.M., May, S.M. and Kelletat, D.H., Eds., Landforms of the World with Google Earth: Understanding Our Environment, Springer, Dordrecht, 347-374.
[12] Slaymaker, O. and Kelly, R.E.J. (2007) Chapter 2: Traditional In-Situ Approaches to the Monitoring of Cryosphere Change. In: Slaymaker, O. and Kelly, R.E.J., Eds., The Cryosphere, Environmental Systems and Global Change Series, Blackwell Publishing, Malden, 49.
[13] National Research Council USA (2014) Opportunities to Use Remote Sensing in Understanding Permafrost and Related Ecological Characteristics: Report of a Workshop. The National Academies Press, Washington DC.
[14] Zwally, H.J., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner, A., Bufton, J., Dezio, J., Hancock, D., Harding, D., Herring, T., Minster, B., Quinn, K., Palm, S., Spinhirne, J. and Thomas, R. (2002) ICESat’s Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land. Journal of Geodynamics, 34, 405-445.
[15] Schutz, B.E., Zwally, H.J., Schuman, C.A., Hancock, D. and DiMarzio, P.J. (2005) Overview of the ICESat Mission. Geophysical Research Letters, 32, Article ID: L21S01.
[16] Atwood, D.K., Guritz, R.M., Muskett, R.R., Lingle, C.S., Sauber, J.M. and Freymueller, J.T. (2007) DEM Control in Arctic Alaska with ICES at Laser Altimetry. IEEE Transactions on Geoscience and Remote Sensing, 45, 3710-3720.
[17] Muskett, R.R., Lingle, C.S., Sauber, J.M., Rabus, B.T. and Tangborn, W.V. (2008) Acceleration of Surface Lowering on the Tidewater Glaciers of Icy Bay, Alaska, USA, from InSAR DEMs and ICESat Altimetry. Earth and Planetary Science Letters, 265, 345-359.
[18] Muskett, R.R., Lingle, C.S., Sauber, J.M., Post, A.S., Tangborn, W.V. and Rabus, B.T. (2008) Surging, Accelerating Surface Lowering and Volume Reduction of the Malaspina Glacier System, Alaska, USA, and Yukon, Canada, from 1972 to 2006. Journal of Glaciology, 54, 788-800.
[19] Muskett, R.R., Lingle, C.S., Sauber, J.M., Post, A.S., Tangborn, W.V., Rabus, B.T. and Echelmeyer, K.A. (2009) Airborne-Spaceborne DEM- and Laser Altimetry-Derived Surface Elevation and Volume Changes of the Bering Glacier System, 1972 through 2006. Journal of Glaciology, 55, 316-326.
[20] Muskett, R.R. (2014) ICESat-Derived Elevation Changes on the Lena Delta and Laptev Sea, Siberia. Open Journal of Modern Hydrology, 4, 1-9.
[21] Rosenqvist, A., Shimada, M. and Watanabe, M. (2004) ALOS PALSAR: Technical Outline and Mission Concepts. Proceedings of the 4th International Symposium on Retrieval of Bio- and Geophysical Parameters from SAR Data for Land Applications, Innsbruck, 16-19 November 2004.
[22] Shimada, M., Isoguchi, O., Tadono, T., Higuchi, R. and Isono, K. (2007) PALSAR CALVAL Summary and Update 2007. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, 23-28 July 2007, 3593-3596.
[23] Rosenqvist, R., Shimada, M., Ito, N. and Watanabe, M. (2007) ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment. IEEE Transactions on Geoscience and Remote Sensing, 45, 3307-3316.
[24] JAXA EORC (2008) ALOS Data Users Handbook, Revision C. Earth Observation Research and Application Center, JAXA, Japan.
[25] Sandwell, D.T., Myer, D., Mellors, R., Shimada, M., Brooks, B. and Foster, J. (2008) Accuracy and Resolution of ALOS Interferometry: Vector Deformation Maps of the Father’s Day Intrusion at Kilauea. IEEE Transactions on Geoscience and Remote Sensing, 46, 3524-3534.
[26] Ebmeier, S.K., Biggs, J., Mather, T.A. and Amelung, F. (2013) Applicability of InSAR to Tropical Volcanoes: Insights from Central America. In: Pyle, D.M., Mather, T.A. and Biggs, J., Eds., Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modelling, Geological Society, London, 15-37.
[27] Sandwell, D., Mellors, R., Tong, X., Wei, M. and Wessel, P. (2011) An InSAR Processing System Based on Generic Mapping Tools. Scrips Institution of Oceanography Technical Report, University of California, San Diego.
[28] Chen, C.W. and Zebker, H.A. (2002) Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Transactions on Geoscience and Remote Sensing, 40, 1709-1719.
[29] Wessel, P. and Smith, W.H.F. (1991) Free Software Helps Map and Display Data. EOS, Transactions of the American Geophysical Union, 72, 441-448.
[30] Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J.F. and Wobbe, F. (2013) Generic Mapping Tools: Improved Version Released. EOS, Transactions of the American Geophysical Union, 94, 409-420.
[31] Smith, R.G., Berry, P.A.M. and Benveniste, J. (2007) Representation of Rivers and Lakes within the Forthcoming ACE2 Global Digital Elevation Model. Proceedings of the ESA 2nd Space for Hydrology Workshop, 12-14 November 2007, Geneva.
[32] Berry, P.A.M., Smith, R.G., Freeman, J.A. and Benveniste, J. (2008) Towards a New Global Digital Elevation Model. In: Sideris, M.G., Ed., International Association of Geodesy Symposia, Springer-Verlag, Berlin, 431-435.
[33] Rexer, M. and Hirt, C. (2014) Comparison of Free High Resolution Digital Elevation Data Sets (ASTER GDEM2, SRTM v2.1/v4.1) and Validation against Accurate Heights from the Australian National Gravity Database. Australian Journal of Earth Sciences, 61, 213-226.
[34] Division of Oil and Gas (2008) Regional Geology of the North Slope of Alaska. Department of Natural Resources, State of Alaska, North Slope Oil and Gas Resources, Plate 2 of 4.
[35] Mull, C.G., Houseknecht, D.W., Pessel, G.H. and Garrity, C.P. (2004) Geologic Map of the Umiat Quadrangle, Alaska. US Geologic Survey, Scientific Investigations Map 2818-A, Department of Interior, Washington DC.
[36] Flores, R.M., Myers, M.D., Houseknecht, D.W., Stricker, G.D., Brizzolara, D.W., Ryherd, T.J. and Takahashi, K.I. (2007) Stratigraphy and Facies of Cretaceous Schrader Bluff and Prince Creek Formations in Colville River Bluffs, North Slope, Alaska. US Geological Survey, Professional Paper 1748, Department of Interior, Washington DC.
[37] Romanovsky, V.E., Smith, S.L., Christiansen, H.H., Shiklomanov, N.J., Streletskiy, D.A., Drozdov, D.S., Oberman, N.G., Kholodov, A.L. and Marchenko, S.S. (2013) Arctic Report Card: Update for 2012—Permafrost. NOAA Climate Program Office through the Arctic Research Program, Washington DC.
[38] Muskett, R.R., Romanovsky, V.E., Cable, W.L. and Kholodov, A.L. (2015) Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 through 2014. International Journal of Geosciences, 6, 12-41.
[39] Arab-Sedze, M., Heggy, E., Bretar, F., Berveiller, D. and Jacquemoud, S. (2014) Quantification of L-Band InSAR Coherence over Volcanic Areas Using LiDAR and in Situ Measurements. Remote Sensing of Environment, 152, 202-216.
[40] Zebker, H.A. and Villasenor, J. (1992) Decorrelation in Interferometric Radar Echoes. IEEE Transactions on Geoscience and Remote Sensing, 30, 950-959.
[41] Wei, M. and Sandwell, D.T. (2010) Decorrelation of L-Band and C-Band Interferometry over Vegetated Areas in California. IEEE Transactions on Geoscience and Remote Sensing, 48, 2942-2952.
[42] Asplin, M.G., Lukovich, J.V. and Barber, D.G. (2009) Atmospheric Forcing of the Beaufort Sea Ice Gyre: Surface Pressure Climatology and Sea Ice Motion. Journal of Geophysical Research, 114, Article ID: C00A06.
[43] Liu, L., Zhang, T. and Wahr, J. (2010) InSAR Measurements of Surface Deformation over Permafrost on the North Slope of Alaska. Journal of Geophysical Research, 115, Article ID: F03023.
[44] Liu, L., Schaefer, K., Zhang, T. and Wahr, J. (2012) Estimating 1992-2000 Average Active Layer Thickness on the Alaskan North Slope from Remotely Sensed Surface Subsidence. Journal of Geophysical Research, 117, Article ID: F01005.
[45] Liu, L., Jafarov, E.E., Schaefer, K.M., Jones, B.M., Zebker, H.A., Williams, C.A., Rogan, J. and Zhang, T. (2014) InSAR Detects Increase in Surface Subsidence Caused by an Arctic Tundra Fire. Geophysical Research Letters, 41, 3906-3913.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.