Scientific Research

An Academic Publisher

**Polar Derivative Versions of Polynomial Inequalities** ()

Barchand Chanam

^{*}
Let be a polynomial of degree n and for a complex number , let denote the polar derivative of the polynomial with respect to . In this paper, first we extend as well as generalize the result proved by Dewan and Mir [Inter. Jour. Math. and Math. Sci., 16 (2005), 2641-2645] to polar derivative. Besides, another result due to Dewan et al. [J. Math. Anal. Appl. 269 (2002), 489-499] is also extended to polar derivative.

Share and Cite:

Chanam, B. (2015) Polar Derivative Versions of Polynomial Inequalities.

*Advances in Pure Mathematics*,**5**, 745-755. doi: 10.4236/apm.2015.512068.Conflicts of Interest

The authors declare no conflicts of interest.

[1] | Bernstein, S. (1926) Lecons Sur Les Propriétés extrémales et la meilleure approximation desfonctions analytiques d’une variable réele, Paris. |

[2] |
Lax, P.D. (1944) Proof of a Conjecture of P. Erdös on the Derivative of a Polynomial. Bulletin of the American Mathematical Society, 50, 509-513. http://dx.doi.org/10.1090/S0002-9904-1944-08177-9 |

[3] |
Malik, M.A. (1969) On the Derivative of a Polynomial. Journal of the London Mathematical Society, 1, 57-60. http://dx.doi.org/10.1112/jlms/s2-1.1.57 |

[4] |
Bidkham, M. and Dewan, K.K. (1992) Inequalities for a Polynomial and Its Derivative. Journal of Mathematical Analysis and Applications, 166, 319-324. http://dx.doi.org/10.1016/0022-247X(92)90298-R |

[5] |
Dewan, K.K. and Mir, A. (2005) On the Maximum Modulus of a Polynomial and Its Derivatives. International Journal of Mathematics and Mathematical Sciences, 16, 2641-2645. http://dx.doi.org/10.1155/IJMMS.2005.2641 |

[6] |
Aziz (1983) Inequalities for the Derivatives of a Polynomial. Proceedings of the American Mathematical Society, 89, 259-266. http://dx.doi.org/10.1090/S0002-9939-1983-0712634-5 |

[7] | Turán, P. (1939) über die ableitung von polynomen. Compositio Mathematica, 7, 89-95. |

[8] |
Govil, N.K. (1973) On the Derivative of Polynomial. Proceedings of the American Mathematical Society, 41, 543-546. http://dx.doi.org/10.1090/S0002-9939-1973-0325932-8 |

[9] |
Dewan, K.K., Kaur, J. and Mir, A. (2002) Inequalities for the Derivative of a Polynomial. Journal of Mathematical Analysis and Applications, 269, 489-499. http://dx.doi.org/10.1016/S0022-247X(02)00030-6 |

[10] |
Aziz, A. and Rather, N.A. (1998) A Refinement of a Theorem of Paul Turán Concerning Polynomials. Mathematical Inequalities & Applications, 1, 231-238. http://dx.doi.org/10.7153/mia-01-21 |

[11] | Rather, N.A. (1998) Extremal Properties and Location of the Zeros of Polynomials. Ph.D. Thesis, University of Kashmir, Srinagar. |

[12] | Govil, N.K., Rahman, Q.I. and Schmeisser, G. (1979) On the Derivative of a Polynomial. Illinois Journal of Mathematics, 23, 319-329. |

[13] | Jain, V.K. (1994) Converse of an Extremal Problem in Polynomials II. Jourmal of the Indian Mathematical Society, 60, 41-47. |

[14] |
Qazi, M.A. (1992) On the Maximum Modulus of Polynomials. Proceedings of the American Mathematical Society, 115, 337-343. http://dx.doi.org/10.1090/S0002-9939-1992-1113648-1 |

[15] |
Dewan, K.K. and Kaur, J. (1994) On the Maximum Modulus of Polynomials. Journal of Mathematical Analysis and Applications, 181, 493-497. http://dx.doi.org/10.1006/jmaa.1994.1038 |

Copyright © 2020 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.