Catalytic Performance of La0.6Ca0.4Fe1-xNixO3 Perovskites in DME Oxidation

Abstract

Substituted La0.6Ca0.4Fe1-xNixO3 (0.0 ≤ x ≤ 1.0) perovskite-type oxides prepared by the amorphous citrate method have been investigated as catalysts in the dimethyl ether (DME) oxidation reaction. The samples with an x ≤ 0.3 composition show an orthorhombic structure, while the intermediate compositions with 0.5 ≤ x ≤ 0.9 show a less crystalline orthorhombic perovskite structure with segregated phases that increase upon increasing the Ni content. The progressive substitution of Fe3+ by Ni2+ in La0.6Ca0.4FeO3 entails the progressive formation of oxygen vacancies and Fe4+ species for Ni substitution degrees of x ≤ 0.5. For larger degrees of substitution with x > 0.7, segregated phases and a progressive loss of the perovskite structure are detected. The highest catalytic performance for the total combustion of DME is obtained from equimolar substitution in the B-site position (Fe0.5Ni0.5), in which a large extent of Fe4+ species and oxygen vacancies are present.

Share and Cite:

Pecchi, G. , Morales, R. , Salinas, D. , Delgado, E. and Fierro, J. (2015) Catalytic Performance of La0.6Ca0.4Fe1-xNixO3 Perovskites in DME Oxidation. Modern Research in Catalysis, 4, 97-106. doi: 10.4236/mrc.2015.44012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Adamson, A.W. and Gast, A.P. (1997) Physical Chemistry of Surfaces. John Wiley & Sons, Inc., Hoboken.
[2] Li, W.B., Wang, J.X. and Gong, H. (2009) Catalytic Combustion of VOCs on Non-Noble Metal Catalysts. Catalysis Today, 148, 81-87.
http://dx.doi.org/10.1016/j.cattod.2009.03.007
[3] Attfield, J.P. (2002) ‘A’ Cation Control of Perovskite Properties. Crystal Engineering, 5, 427-438.
http://dx.doi.org/10.1016/S1463-0184(02)00054-0
[4] Cimino, S., Lisi, L., Pirone, R., Russo, G. and Turco, M. (2000) Methane Combustion on Perovskites-Based Structured Catalysts. Catalysis Today, 59, 19-31.
http://dx.doi.org/10.1016/S0920-5861(00)00269-8
[5] Bueno-Lopez, A., Krishna, K., Makkee, M. and Moulijn, J.A. (2005) Enhanced Soot Oxidation by Lattice Oxygen via La3+-Doped CeO2. Journal of Catalysis, 230, 237-248.
http://dx.doi.org/10.1016/j.jcat.2004.11.027
[6] Falcón, H., Barbero, J.A., Alonso, J.A., Martínez-Lope, M.J. and Fierro, J.L.G. (2002) SrFeO3-δ Perovskite Oxides: Chemical Features and Performance for Methane Combustion. Chemistry of Materials, 14, 2325-2333.
http://dx.doi.org/10.1021/cm011292l
[7] Fino, D., Russo, N., Saracco, G. and Speechia, V. (2003) The Role of Suprafacial Oxygen in Some Perovskites for the Catalytic Combustion of Soot. Journal of Catalysis, 217, 367-375.
http://dx.doi.org/10.1016/S0021-9517(03)00143-X
[8] Pecchi, G., Jiliberto, M.G., Delgado, E.J., Cadus, L.E. and Fierroc, J.L.G. (2001) Effect of B-Site Cation on the Catalytic Activity of La1-xCaxBO3 (B = Fe, Ni) Perovskite-Type Oxides for Toluene Combustion. Journal of Chemical Technology and Biotechnology, 86, 1067-1073.
[9] Pecchi, G., Reyes, P., Zamora, R., Campos, C., Caduus, L.E. and Barbero, B.P. (2008) Effect of the Preparation Method on the Catalytic Activity of La1-xCaxFeO3 Perovskite-Type oxides. Catalysis Today, 133-135, 420-427.
http://dx.doi.org/10.1016/j.cattod.2007.11.011
[10] Pecchi, G. and Campos, C. (2007) Structure and Activity of LaMn1-yCoyO3 Perovskites. Reaction Kinetics and Catalysis Letters, 91, 353-359.
http://dx.doi.org/10.1007/s11144-007-5125-1
[11] Lisi, L., Bagnasco, G., Ciambelli, P., De Rossi, S., Porta, P., Russo, G. and Turco, M. (1999) Perovskite-Type Oxides: II. Redox Properties of LaMn1-xCuxO3 and LaCo1-xCuxO3 and Methane Catalytic Combustion. Journal of Solid State Chemistry, 146, 176-183.
http://dx.doi.org/10.1006/jssc.1999.8327
[12] Pecchi, G., Reyes, P., Zamora, R., Cadus, L.E. and Fierro, J.L.G. (2008) Surface Properties and Performance for VOCs Combustion of LaFe1-yNiyO3 Perovskite Oxides. Journal of Solid State Chemistry, 181, 905-912.
http://dx.doi.org/10.1016/j.jssc.2008.01.020
[13] Bhat, I., Husain, S., Khan, W. and Patil, S.I. (2013) Effect of Zn Doping on Structural, Magnetic and Dielectric Properties of LaFeO3 Synthesized through Sol-Gel Auto-Combustion Process. Materials Research Bulletin, 48, 4506-4512.
http://dx.doi.org/10.1016/j.materresbull.2013.07.028
[14] Yu, L., Diao, G.Q., Ye, F., Sun, M., Zhou, J.L., Li, Y.F. and Liu, Y. (2011) Promoting Effect of Ce in Ce/OMS-2 Catalyst for Catalytic Combustion of Dimethyl Ether. Catalysis Letters, 141, 111-119.
http://dx.doi.org/10.1007/s10562-010-0475-0
[15] Sun, M., Yu, L., Ye, F., Diao, G.Q., Yu, Q., Hao, Z.F., Zheng, Y.Y. and Yuan, L.X. (2013) Transition Metal Doped Cryptomelane-Type Manganese Oxide for Low-Temperature Catalytic Combustion of Dimethyl Ether. Chemical Engineering Journal, 220, 320-327.
http://dx.doi.org/10.1016/j.cej.2013.01.061
[16] Zhou, J.L., Yu, L., Sun, M., Diao, G.Q., Li, Y.F. and Cheng, X.L. (2013) Enhanced Activity and Stability of Al2O3-Pillared Layered Manganese Oxides for DME Combustion. Microporous and Mesoporous Materials, 181, 105-110.
http://dx.doi.org/10.1016/j.micromeso.2013.07.023
[17] Porta, P., De Rossi, S., Faticanti, M., Minelli, G., Pettiti, I., Lisi, L. and Turco, M. (1999) Perovskite-Type Oxides: I. Structural, Magnetic, and Morphological Properties of LaMn1-xCuxO3 and LaCo1-xCuxO3 Solid Solutions with Large Surface Area. Journal of Solid State Chemistry, 146, 291-304.
http://dx.doi.org/10.1006/jssc.1999.8326
[18] Ciambelli, P., Cimino, S., Lisi, L., Faticanti, M., Minelli, G., Pettiti, I. and Porta, P. (2001) La, Ca and Fe Oxide Perovskites: Preparation, Characterization and Catalytic Properties for Methane Combustion. Applied Catalysis B: Environmental, 33, 193-203.
http://dx.doi.org/10.1016/S0926-3373(01)00163-1
[19] Russo, N., Fino, D., Saracco, G. and Specchia, V. (2005) Studies on the Redox Properties of Chromite Perovskite Catalysts for Soot Combustion. Journal of Catalysis, 229, 459-469.
http://dx.doi.org/10.1016/j.jcat.2004.11.025
[20] Merino, N.A., Barbero, B.P., Grange, P. and Cadús, L.E. (2005) La1-xCaxCoO3 Perovskite-Type Oxides: Preparation, Characterisation, Stability, and Catalytic Potentiality for the Total Oxidation of Propane. Journal of Catalysis, 231, 232-244.
http://dx.doi.org/10.1016/j.jcat.2005.01.003
[21] Buciuman, F.C., Patcas, F. and Zsakó, J. (2000) TPR-Study of Substitution Effects on Reducibility and Oxidative Non-Stoichiometry of La0.8A’0.2MnO3+δ Perovskites. Journal of Thermal Analysis and Calorimetry, 61, 819-825.
http://dx.doi.org/10.1023/A:1010153331841
[22] Tejuca, L.G., Fierro, J.L.G. and Tascon, J.M.D. (1989) Structure and Reactivity of Perovskite-Type Oxides. Advances in Catalysis, 36, 237-328.
http://dx.doi.org/10.1016/S0360-0564(08)60019-X
[23] Lee, Y.N., Lago, R.M., Fierro, J.L.G., Cortes, V., Sapina, F. and Martinez, E. (2001) Surface Properties and Catalytic Performance for Ethane Combustion of La1-xKxMnO3+δ Perovskites. Applied Catalysis A: General, 207, 17-24.
http://dx.doi.org/10.1016/S0926-860X(00)00610-4
[24] Fu, M.L., Yue, X.H., Ye, D.Q., Ouyang, J.H., Huang, B.C., Wu, J.H. and Liang, H. (2010) Soot Oxidation via CuO Doped CeO2 Catalysts Prepared Using Coprecipitation and Citrate Acid Complex-Combustion Synthesis. Catalysis Today, 153, 125-132.
http://dx.doi.org/10.1016/j.cattod.2010.03.017
[25] Taguchi, H., Sugita, A., Nagao, M. and Tabata, K. (1995) Surface Characterization of LaMnO3+δ Powder Annealed in Air. Journal of Solid State Chemistry, 119, 164-168.
http://dx.doi.org/10.1016/0022-4596(95)80025-K
[26] Reyes, P., Pecchi, G. and Fierro, J.L.G. (2001) Surface Structures of Rh-Cu Sol-Gel Catalysts and Performance for Crotonaldehyde Hydrogenation. Langmuir, 17, 522-527.
http://dx.doi.org/10.1021/la0006418
[27] Aneggi, E., Llorca, J., de Leitenburg, C., Dolcetti, G. and Trovarelli, A. (2009) Soot Combustion Over Silver-Supported Catalysts. Applied Catalysis B: Environmental, 91, 489-498.
http://dx.doi.org/10.1016/j.apcatb.2009.06.019
[28] Dhakad, M., Mitshuhashi, T., Rayalu, S., Doggali, P., Bakardjiva, S., Subrt, J., Fino, D., Haneda, H. and Labhsetwar, N. (2008) Co3O4-CeO2 Mixed Oxide-Based Catalytic Materials for Diesel Soot Oxidation. Catalysis Today, 132, 188-193.
http://dx.doi.org/10.1016/j.cattod.2007.12.035
[29] Ciambelli, P., Cimino, S., De Rossi, S., Faticanti, M., Lisi, L., Minelli, G., Pettiti, I., Porta, P., Russo, G. and Turco, M. (2000) AMnO3 (A=La, Nd, Sm) and Sm1-xSrxMnO3 Perovskites as Combustion Catalysts: Structural, Redox and Catalytic Properties. Applied Catalysis B: Environmental, 24, 243-253.
http://dx.doi.org/10.1016/S0926-3373(99)00110-1
[30] Bialobok, B., Trawczynski, J., Mista, W. and Zawadzki, M. (2007) Ethanol Combustion Over Strontium- and Cerium- Doped LaCoO3 Catalysts. Applied Catalysis B: Environmental, 72, 395-403.
http://dx.doi.org/10.1016/j.apcatb.2006.12.006
[31] Pereniguez, R., Hueso, J.L., Gaillard, F., Holgado, J.P. and Caballero, A. (2012) Study of Oxygen Reactivity in La1-xSrxCoO3-δ Perovskites for Total Oxidation of Toluene. Catalysis Letters, 142, 408-416.
http://dx.doi.org/10.1007/s10562-012-0799-z
[32] Zhang, J.Y., Tan, D.D., Meng, Q.J., Weng, X.L. and Wu, Z.B. (2015) Structural Modification of LaCoO3 Perovskite for Oxidation Reactions: The Synergistic Effect of Ca2+ and Mg2+ Co-Substitution on Phase Formation and Catalytic Performance. Applied Catalysis B: Environmental, 172, 18-26.
http://dx.doi.org/10.1016/j.apcatb.2015.02.006
[33] Jimenez, R., Zamora, R., Pecchi, G., Garcia, X. and Gordon, A.L. (2010) Effect of Ca-Substitution in La1-xCaxFeO3 Perovskites on the Catalytic Activity for Soot Combustion. Fuel Processing Technology, 91, 546-549.
http://dx.doi.org/10.1016/j.fuproc.2009.12.017
[34] Seyfi, B., Baghalha, M. and Kazemian, H. (2009) Modified LaCoO3 Nano-Perovskite Catalysts for the Environmental Application of Automotive CO Oxidation. Chemical Engineering Journal, 148, 306-311.
http://dx.doi.org/10.1016/j.cej.2008.08.041
[35] Ivanov, D.V., Pinaeva, L.G., Sadovskaya, E.M. and Isupova, L.A. (2011) Influence of the Mobility of Oxygen on the Reactivity of La1-xSrxMnO3 Perovskites in Methane Oxidation. Kinetics and Catalysis, 52, 401-408.
http://dx.doi.org/10.1134/S0023158411030086

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.