Share This Article:

Alternative Derivation of the Mean-Field Equations for Composite Fermions

Abstract Full-Text HTML XML Download Download as PDF (Size:263KB) PP. 1737-1742
DOI: 10.4236/jmp.2015.612175    2,416 Downloads   2,691 Views  

ABSTRACT

The Hamiltonian describing a composite fermion system is usually presented in a phenomenological way. By using a classical nonrelativistic U(1) × U(1) gauge field model for the electromagnetic interaction of electrons, we show how to obtain the mean-field Hamiltonian describing composite fermions in 2 + 1 dimensions. In order to achieve this goal, the Dirac Hamiltonian formalism for constrained systems is used. Furthermore, we compare these results with the ones corresponding to the inclusion of a topological mass term for the electromagnetic field in the Lagrangian.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Manavella, E. and Repetto, C. (2015) Alternative Derivation of the Mean-Field Equations for Composite Fermions. Journal of Modern Physics, 6, 1737-1742. doi: 10.4236/jmp.2015.612175.

References

[1] Jain, J.K. and Anderson, P.W. (2009) Proceedings of the National Academy of Sciences of the United States of America,
106, 9131-9134.
http://dx.doi.org/10.1073/pnas.0902901106
[2] Lu, H., Das Sarma, S. and Park, K. (2010) Physical Review B, 82, 201303(R).
http://dx.doi.org/10.1103/PhysRevB.82.201303
[3] Girvin, S.M. and MacDonald, A.H. (1987) Physical Review Letters, 58, 1252-1255.
http://dx.doi.org/10.1103/PhysRevLett.58.1252
[4] Zhang, S.C., Hansson, T.H. and Kivelson, S.A. (1989) Physical Review Letters, 62, 82-85.
http://dx.doi.org/10.1103/PhysRevLett.62.82
[5] Jain, J.K. (1989) Physical Review Letters, 63, 199-202.
http://dx.doi.org/10.1103/PhysRevLett.63.199
[6] Schrieffer, J.R. (1964) Theory of Superconductivity. W.A. Benjamin, Inc., New York.
[7] Mahan, G.D. (2000) Many-Particle Physics. 3rd Edition, Kluwer Academic/Plenum Publishers, New York.
http://dx.doi.org/10.1007/978-1-4757-5714-9
[8] Manavella, E.C. (2001) International Journal of Theoretical Physics, 40, 1453-1474.
http://dx.doi.org/10.1023/A:1017505511427
[9] Manavella, E.C. and Addad, R.R. (2009) International Journal of Theoretical Physics, 48, 2473-2485.
http://dx.doi.org/10.1007/s10773-008-9925-5
[10] Halperin, B.I., Lee, P.A. and Read, N. (1993) Physical Review B, 47, 7312-7343.
http://dx.doi.org/10.1103/PhysRevB.47.7312
[11] Lopez, A. and Fradkin, E. (2003) Fermionic Chern-Simons Field Theory for the Fractional Hall Effect. In: Heinonen, O., Ed., Composite Fermions, World Scientific, Singapore.
[12] Lopez, A. and Fradkin, E. (1991) Physical Review B, 44, 5246-5262.
http://dx.doi.org/10.1103/PhysRevB.44.5246
[13] Jain, J.K. (2007) Composite Fermions. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511607561
[14] Greiner, W. and Reinhardt, J. (1996) Field Quantization. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-61485-9
[15] Jackiw, R. and Templeton, S. (1981) Physical Review D, 23, 2291-2304.
http://dx.doi.org/10.1103/PhysRevD.23.2291

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.