[1]
|
Campbell, M.N. (2008) Biodiesel: Algae as a Renewable Source for Liquid Fuel. Guelph Engineering Journal, 1, 2-7.
|
[2]
|
Pirt, S.J. (1986) The Thermodynamic Efficiency (Quantum Demand) and Dynamics of Photosynthetic Growth. New Phytologist, 102, 3-37. http://dx.doi.org/10.1111/j.1469-8137.1986.tb00794.x http://www.soe.uoguelph.ca/webfiles/gej/articles/GEJ_001-002-007_Campbell_Biodiesel_from_Algae.pdf
|
[3]
|
Ray, J.G. and Thomas, T.B. (2012) Ecology and Diversity of Green-Algae of Tropical Oxic Dystrstepts Soils in Relation to Different Soil Parameters and Vegetation. Research Journal of Soil Biology, 4, 42-68. http://dx.doi.org/10.3923/rjsb.2012.42.68
|
[4]
|
Chisti, Y. (2007) Biodiesel from Micro Algae. Biotechnology advances, 25, 294-306. http://dx.doi.org/10.1016/j.biotechadv.2007.02.001
|
[5]
|
Yamaguchi, K. (1997) Recent Advances in Microalgal Bioscience in Japan, with Special Reference to Utilization of Biomass and Metabolites: A Review. Journal of Applied Phycology, 8, 487-502. http://dx.doi.org/10.1007/BF02186327
|
[6]
|
Chiu, S., Kao, C., Chen, T., Chang, Y., Kuo, C. and Lin, C. (2015) Cultivation of Microalgal Chlorella for Biomass and Lipid Production Using Wastewater as Nutrient Resource. Bioresource Technology, 184, 179-189. http://dx.doi.org/10.1016/j.biortech.2014.11.080
|
[7]
|
Josephine, A., Niveditha, C., Radhika, A., Shali, A.B., Kumar, T.S., Dharani, G. and Kirubagaran, R. (2015) Analytical Evaluation of Different Carbon Sources and Growth Stimulators on the Biomass and Lipid Production of Chlorella vulgaris—Implications for Biofuels. Biomass and Bioenergy, 75, 170-179. http://dx.doi.org/10.1016/j.biombioe.2015.02.016
|
[8]
|
Sung, K.D., Lee, J.S., Shin, C.S., Park, S.C. and Choi, M.J. (1999) CO2 Fixation by Chlorella sp. KR-1 and Its Cultural Characteristics. Bioresource Technology, 68, 269-273. http://dx.doi.org/10.1016/S0960-8524(98)00152-7
|
[9]
|
Chu, H., Tan, X., Zhang, Y., Yang, L., Zhao, F. and Guo, J. (2015) Continuous Cultivation of Chlorella pyrenoidosa Using Anaerobic Digested Starch Processing Wastewater in the Outdoors. Bioresource Technology, 185, 40-48. http://dx.doi.org/10.1016/j.biortech.2015.02.030
|
[10]
|
Krishna, A.R., Dev, L. and Thankamani, V. (2012) An Integrated Process for Industrial Effluent Treatment and Biodiesel Production Using Microalgae. Research in Biotechnology, 3, 47-60.
|
[11]
|
Dalrymple, O.K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q. and Ergas, S. (2013) Wastewater Use in Algae Production for Generation of Renewable Resources: A Review and Preliminary Results. Aquatic Biosystems, 9, 2. http://dx.doi.org/10.1186/2046-9063-9-2 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3561657&tool=pmcentrez&rendertype=abstract
|
[12]
|
Deviram, G., Pradeep, K.V. and Prasuna, R.G. (2011) Purification of Waste Water Using Algal Species. European Journal of Experimental Biology, 1, 216-222.
|
[13]
|
Sun, Z., Zhou, Z., Gerken, H., Chen, F. and Liu, J. (2015) Screening and Characterization of Oleaginous Chlorella Strains and Exploration of Photoautotrophic Chlorella Protothecoides for Oil Production. Bioresource Technology, 184, 53-62. http://dx.doi.org/10.1016/j.biortech.2014.09.054
|
[14]
|
Sudhakar, K. and Premalatha, M. (2012) Theoretical Assessment of Algal Biomass Potential for Carbon Mitigation and Biofuel Production. Iranica Journal of Energy & Environment, 3, 232-240. http://www.ijee.net/Journal/ijee/vol3/no3/5.pdf http://dx.doi.org/10.5829/idosi.ijee.2012.03.03.3273
|
[15]
|
Juneja, A., Ceballos, R. and Murthy, G. (2013) Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. Energies, 6, 4607-4638. http://www.mdpi.com/1996-1073/6/9/4607/ http://dx.doi.org/10.3390/en6094607
|
[16]
|
Takeshita, T., Ota, S., Yamazaki, T., Hirata, A. and Zachleder, V. (2014) Starch and Lipid Accumulation in Eight Strains of Six Chlorella Species under Comparatively High Light Intensity and Aeration Culture Conditions. Bioresource Technology, 158, 127-134. http://dx.doi.org/10.1016/j.biortech.2014.01.135
|
[17]
|
Olofsson, M., Lamela, T., Nilsson, E., Bergé, J.P., del Pino, V., Uronen, P. and Legrand, C. (2012) Seasonal Variation of Lipids and Fatty Acids of the Microalgae Nannochloropsis oculata Grown in Outdoor Large-Scale Photobioreactors. Energies, 5, 1577-1592. http://dx.doi.org/10.3390/en5051577
|
[18]
|
Kilham, S., Kreeger, D., Goulden, C. and Lynn, S. (1997) Effects of Nutrient Limitation on Biochemical Constituents of Ankistrodesmus falcatus. Freshwater Biology, 38, 591-596. http://dx.doi.org/10.1046/j.1365-2427.1997.00231.x http://www3.interscience.wiley.com/cgi-bin/ fulltext?ID=119146803&PLACEBO=IE.pdf&mode=pdf
|
[19]
|
Sharma, K.K., Schuhmann, H. and Schenk, P.M. (2012) High Lipid Induction in Microalgae for Biodiesel Production. Energies, 5, 1532-1553. http://dx.doi.org/10.3390/en5051532
|
[20]
|
Mizuno, Y., Sato, A., Watanabe, K., Hirata, A., Takeshita, T., Ota, S., Sato, N., Zachleder, V., Tsuzuki, M. and Kawano, S. (2013) Sequential Accumulation of Starch and Lipid Induced by Sulfur Deficiency in Chlorella and Parachlorella Species. Bioresource Technology, 129, 150-155. http://dx.doi.org/10.1016/j.biortech.2012.11.030
|
[21]
|
Sankar, M. and Ramasubramanian, V. (2012) Biomass Production of Commercial Algae Chlorella Vulgaris on Different Culture Media. E-Journal of Life Sciences, 1, 56-60. https://www.academia.edu/5862956/Biomass_production_of_commercial_algae_ Chlorella_vulgaris_on_different_culture_media
|
[22]
|
Juntila, D.J., Bautista, M.A. and Monotilla, W. (2015) Biomass and Lipid Production of a Local Isolate Chlorella sorokiniana under Mixotrophic Growth Conditions. Bioresource Technology, 191, 3-6. http://linkinghub.elsevier.com/retrieve/pii/S0960852415004307
|
[23]
|
Xu, J. and Hu, H. (2013) Screening High Oleaginous Chlorella Strains from Different Climate Zones. Bioresource Technology, 144, 637-643. http://dx.doi.org/10.1016/j.biortech.2013.07.029
|
[24]
|
Guiry, M.D. and Guiry, G.M. (2015) Chlorella lobophora V.M Andreyeva. Worldwide Electronic Publications, National University of Ireland, Galway. http://www.algaebase.org/search/species/detail/?species_id=gdfb06b9e08b65a7f
|
[25]
|
Stein, J.R. (1973) Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, 56-60.
|
[26]
|
Andersen, R.A. (2005) Algal Culturing Techniques. Elsevier Academic Press, London, 578.
|
[27]
|
Kobayashi, N., Noel, E.A., Barnes, A., Watson, A., Rosenberg, J.N., Erickson, G. and Oyler, G.A. (2013) Characterization of Three Chlorella sorokiniana Strains in Anaerobic Digested Effluent from Cattle Manure. Bioresource Technology, 150, 377-386. http://dx.doi.org/10.1016/j.biortech.2013.10.032
|
[28]
|
Stansell, G.R., Gray, V.M. and Sym, S.D. (2012) Microalgal Fatty Acid Composition: Implications for Biodiesel Quality. Journal of Applied Phycology, 24, 791-801. http://dx.doi.org/10.1007/s10811-011-9696-x
|
[29]
|
Knothe, G. (2005) Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters. Fuel Processing Technology, 86, 1059-1070. http://dx.doi.org/10.1016/j.fuproc.2004.11.002
|
[30]
|
Knothe, G. (2008) “Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties. Energy and Fuels, 22, 1358-1364. http://dx.doi.org/10.1021/ef700639e
|
[31]
|
Tahira, F., Hussain, S.T., Ali, S.D., Iqbal, Z. and Ahmad, W. (2012) Homogeneous Catalysis of High Free Fatty Acid Waste Cooking Oil to Fatty Acid Methyl Esters (Biodiesel). International Journal of Environment and Pollution, 1, 31-36.
|
[32]
|
Mistry, B.B. (2009) A Handbook of Spectroscopic Data Chemistry (UV, IR, PMR, 13CNMR and Mass Spectroscopy). Oxford Book Company, Jaipur, 27-63.
|
[33]
|
Patil, P.D., Gude, V.G., Mannarswamy, A., Deng, S., Cooke, P., Munson-McGee, S., Rhodes, I., Lammers, P. and Nirmalakhandan, N. (2011) Optimization of Direct Conversion of Wet Algae to Biodiesel under Supercritical Methanol Conditions. Bioresource Technology, 102, 118-122. http://dx.doi.org/10.1016/j.biortech.2010.06.031
|