[1]
|
Shor, P. (1997) Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing, 26, 1484-1509. http://dx.doi.org/10.1137/S0097539795293172
|
[2]
|
Childs, A.M., Landahl, A.J. and Parrilo, P.A. (2007) Quantum Algorithm for Ordered Search Problem via Semidenite Programming. Physical Review A, 75, Article ID: 032335. http://dx.doi.org/10.1103/PhysRevA.75.032335
|
[3]
|
Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A. and Preda, D. (2001) A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science, 292, 472-475. http://dx.doi.org/10.1126/science.1057726
|
[4]
|
Harrow, A.W., Hassidim, A. and Lloyd, S. (2009) Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett., 103, 150502. http://dx.doi.org/10.1103/PhysRevLett.103.150502
|
[5]
|
Bacon, D. and van Dam, W. (2010) Recent Progress in Quantum Algorithms. Commun. ACM, 53, 84-93.
|
[6]
|
Toffoli, T. (1980) Reversible Computing. In: Proceedings of the 7th Colloquium on Automata, Languages and Programming, Springer-Verlag, London, 632-644. http://dx.doi.org/10.1007/3-540-10003-2_104
|
[7]
|
Bennett, C.H. (1989) Time/Space Trade-Offs for Reversible Computation. SIAM Journal on Computing, 18, 766-776. http://dx.doi.org/10.1137/0218053
|
[8]
|
Deutsch, D. (1989) Quantum Computational Networks. Proceedings of the Royal Society of London A, 425, 73-90. http://dx.doi.org/10.1098/rspa.1989.0099
|
[9]
|
Barenco, A. (1995) A Universal Two-Bit Gate for Quantum Computation. Proceedings ofthe Royal Society of London A, 449, 679-683.
|
[10]
|
Deutsch, D., Barenco, A. and Ekert, A. (1995) Universality in Quantum Computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 449, 669-677. http://dx.doi.org/10.1098/rspa.1995.0065
|
[11]
|
Di Vincenzo, D.P. (1995) Two-Bit Gates Are Universal for Quantum Computation. Physical Review A, 51, 1015-1022. http://dx.doi.org/10.1103/PhysRevA.51.1015
|
[12]
|
Lloyd, S. (1995) Almost Any Quantum Logic Gate Is Universal. Physical Review Letters, 75, 346-349. http://dx.doi.org/10.1103/physrevlett.75.346
|
[13]
|
Nielsen, M. and Chuang, I. (2003) Quantum Computing and Quantum Information. Cambridge University Press, Cambridge.
|
[14]
|
Phillip Kaye, R.L. and Mosca, M. (2007) An Introduction to Quantum Computing. Oxford University Press, Oxford.
|
[15]
|
Rieffel, E. and Polak, W. (1998) An Introduction to Quantum Computing for Non-Physicists. http://arxiv.org/abs/quant-ph/9809016
|
[16]
|
Raychev, N. (2015) Unitary Combinations of Formalized Classes in Qubit Space. International Journal of Scientific and Engineering Research, 6, 395-398. http://dx.doi.org/10.14299/ijser.2015.04.003
|
[17]
|
Raychev, N. (2015) Functional Composition of Quantum Functions. International Journal of Scientific and Engineering Research, 6, 413-415. http://dx.doi.org/10.14299/ijser.2015.04.004
|
[18]
|
Raychev, N. (2015) Logical Sets of Quantum Operators. International Journal of Scientific and Engineering Research, 6, 391-394. http://dx.doi.org/10.14299/ijser.2015.04.002
|
[19]
|
Raychev, N. (2015) Controlled Formalized Operators. International Journal of Scientific and Engineering Research, 6, 1467-1469. http://dx.doi.org/10.14299/ijser.2015.05.003
|
[20]
|
Raychev, N. (2015) Controlled Formalized Operators with Multiple Control Bits. International Journal of Scientific and Engineering Research, 6, 1470-1473. http://dx.doi.org/10.14299/ijser.2015.05.001
|
[21]
|
Raychev, N. (2015) Connecting Sets of Formalized Operators. International Journal of Scientific and Engineering Research, 6, 1474-1476. http://dx.doi.org/10.14299/ijser.2015.05.002
|
[22]
|
Raychev, N. (2015) Indexed Formalized Operators for N-Bit Circuits. International Journal of Scientific and Engineering Research, 6, 1477-1480.
|
[23]
|
Raychev, N. (2015) Universal Quantum Operators. International Journal of Scientific and Engineering Research, 6, 1369-1371. http://dx.doi.org/10.14299/ijser.2015.06.005
|
[24]
|
Raychev, N. (2015) Encoding and Decoding of Additional Logic in the Phase Space of All Operators. International Journal of Scientific and Engineering Research, 6, 1356-1366. http://dx.doi.org/10.14299/ijser.2015.07.003
|