Prefrontal-Parietal Correlation during Performance of a Visuospatial Working Memory Task in Children, Adolescents and Young Adults

Abstract

Development of the prefrontal cortex and its connectivity with different cortical areas has strong implications for the improvement of working memory. The aim of this research was to characterize the interhemispheric (INTER) prefrontal and hemispheric (INTRA) frontopolar-dorsolateral prefrontal and dorsolateral prefrontal-parietal correlation (r) in children, adolescents and adults during performance of a visuospatial working memory task (VSWM). INTERr and INTRAr of 36 different aged male participants (11 - 13, 18 - 20 and 26 - 30 years old) were calculated during performance of the Corsi Block-Tapping task, which assessed VSWM. On this task, children showed lower correct responses than adolescents and adults. Adults also showed lower total execution times than children and adolescents, with a more efficient performance. On the EEGs, the older groups showed both higher interfrontal correlations and left and right prefronto-parietal correlations than children. According to our results, the progressive efficiency in VSWM is related to differences in EEG patterns among children, adolescents and adults.

Share and Cite:

Guevara, M. , Hevia-Orozco, J. , Sanz-Martin, A. , Rizo-Martínez, L. , Hernández-González, M. and Almanza-Sepúlveda, M. (2015) Prefrontal-Parietal Correlation during Performance of a Visuospatial Working Memory Task in Children, Adolescents and Young Adults. Journal of Behavioral and Brain Science, 5, 448-457. doi: 10.4236/jbbs.2015.510043.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Baddeley, A. (1996) The Fractionation of Working Memory. Proceedings of the National Academy of Sciences of the United States of America, 93, 13468-13472.
http://dx.doi.org/10.1073/pnas.93.24.13468
[2] Cowan, N. (1998) Visual and Auditory Working Memory Capacity. Trends in Cognitive Sciences, 2, 77.
http://dx.doi.org/10.1016/S1364-6613(98)01144-9
[3] Matute, E., Sanz, A., Gumá, E., Roselli, M. and Ardila, A. (2009) Influencia del nivel educativo de los padres, el tipo de escuela y el sexo en el desarrollo de la atención y la memoria. Revista Latinoamericana de Psicología, 41, 257-276.
[4] Anderson, P. (2008) Towards a Developmental Model of Executive Function. In: Anderson, V., Jacobs, R. and Anderson, P., Eds., Executive Functions and the Frontal Lobes: a Lifespan Perspective, Taylor & Francis, New York, 3-22.
[5] Hale, S. (1990) A Global Developmental Trend in Cognitive Processing Speed. Child Development, 61, 653-663.
http://dx.doi.org/10.2307/1130951
[6] Corsi, P. (1972) Memory and the Medial Temporal Region of the Brain. Doctoral Thesis in Philosophy, McGill University, Montreal.
[7] Orsini, A. (1994) Corsi’s Block Tapping Test: Standardization and Concurrent Validity with WISC-R for Children Aged 11 to 16. Perceptual and Motor Skills, 79, 1547-1554.
http://dx.doi.org/10.2466/pms.1994.79.3f.1547
[8] Guevara-Pérez, M., Sanz-Martin, A., Hernández-González, M. and Sandoval-Carrillo, I. (2014) CubMemPC: Prueba computarizada para evaluar la memoria a corto plazo visoespacial con y sin distractores. Revista Mexicana de Ingeniería Biomédica, 35, 175-186.
[9] van Asselen, M., Kessels, R., Neggers, S., Kapelle, J., Frijns, C. and Postma, A. (2006) Brain Areas Involved in Spatial Working Memory. Neuropsychologia, 44, 1185-1194.
http://dx.doi.org/10.1016/j.neuropsychologia.2005.10.005
[10] Kessels, R., van Zandvoort, M., Postma, A., Kappelle, J. and de Haan, E. (2000) The Corsi Block-Tapping Task: Standardization and Normative Data. Applied Neuropsychology, 7, 252-258.
http://dx.doi.org/10.1207/S15324826AN0704_8
[11] Baddeley, A. (2000) The Episodic Buffer: A New Component of Working Memory? Trends in Cognitive Sciences, 4, 417-423.
http://dx.doi.org/10.1016/S1364-6613(00)01538-2
[12] Smith, E., Jonides, J., Marshuetz, C. and Koeppe, R. (1998) Components of Verbal Working Memory: Evidence from Neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 95, 876-882.
http://dx.doi.org/10.1073/pnas.95.3.876
[13] Courtney, S., Ungerleider, L., Keil, K. and Haxby, J. (1996) Object and Spatial Visual Working Memory Activate Separate Neural Systems in Human Cortex. Cerebral Cortex, 6, 39-49.
http://dx.doi.org/10.1093/cercor/6.1.39
[14] Fuster, J. (2002) Frontal Lobe and Cognitive Development. Journal of Neurocytology, 31, 373-385.
http://dx.doi.org/10.1023/A:1024190429920
[15] Walter, H., Bretschneider, V., Gron, G., Zurowski, B., Wunderlich, A., Tomczak, R. and Spitzer, M. (2003) Evidence for Quantitative Domain Dominance for Verbal and Spatial Working Memory in Frontal and Parietal Cortex. Cortex, 39, 897-911.
http://dx.doi.org/10.1016/S0010-9452(08)70869-4
[16] Nelson, C., Monk, C., Lin, J., Carver, L., Thomas, K. and Truwit, C. (2000) Functional Neuroanatomy of Spatial Working Memory in Children. Developmental Psychology, 36, 109-116.
http://dx.doi.org/10.1037/0012-1649.36.1.109
[17] Sarnthein, J., Petsche, H., Reppelsberger, P., Shaw, G.L. and von Stein, A. (1998) Synchronization between Prefrontal and Posterior Association Cortex during Human Working Memory. Proceedings of the National Academy of Sciences of the United States of America, 95, 7092-7096.
http://dx.doi.org/10.1073/pnas.95.12.7092
[18] Thomason, M., Race, E., Burrows, B., Whitfield-Gabrieli, S., Glover, G. and Gabrieli, J. (2009) Development of Spatial and Verbal Working Memory Capacity in the Human Brain. Journal of Cognitive Neuroscience, 21, 316-332.
http://dx.doi.org/10.1162/jocn.2008.21028
[19] Thatcher, R., North, D. and Biver, C. (2008) Development of Cortical Connections as Measure by EEG Coherence and Phase Delay. Human Brain Mapping, 29, 1400-1415.
http://dx.doi.org/10.1002/hbm.20474
[20] Horwitz, B. (2003) The Elusive Concept of Brain Connectivity. Neuroimage, 19, 466-470.
http://dx.doi.org/10.1016/S1053-8119(03)00112-5
[21] Guevara, M., RizoMartínez, L., Robles Aguirre, F. and Hernández González, M. (2012) Prefrontal-Parietal Correlation during Performance of the Towers of Hanoi Task in Male Children, Adolescents and Young Adults. Developmental Cognitive Neuroscience, 2, 129-138.
http://dx.doi.org/10.1016/j.dcn.2011.05.002
[22] Ruíz-Díaz, M., Hernández-González, M., Guevara, M.A., Amezcua, C. and Agmo, A. (2012) Prefrontal EEG Correlation during Tower of Hanoi and WCST Performance: Effect of Emotional Visual Stimuli. International Society for Sexual Medicine, 9, 2631-2640.
http://dx.doi.org/10.1111/j.1743-6109.2012.02782.x
[23] Sanz-Martin, A., Hernández-González, M., Santana, G., Guevara, M.A., Gumá, E. and Amezcua, C. (2012) Effects of Alcohol on Performance of the Tower of London Task in Relation to the Menstrual Cycle: An Electroencephalographic Study. Behavioural Pharmacology, 23, 637-649.
http://dx.doi.org/10.1097/FBP.0b013e3283584748
[24] Guevara-Pérez, M. and Corsi-Cabrera, M. (1996) EEG Coherence or EEG Correlation. International Journal of Psychophisiology, 23, 145-153.
http://dx.doi.org/10.1016/S0167-8760(96)00038-4
[25] Sauseng, P., Klimesch, W., Schabus, M. and Doppelmayr, M. (2005) Fronto-Parietal EEG Coherence in Theta and Upper Alpha Reflect Central Executive Functions of Working Memory. International Journal of Psychophysiology, 57, 97-103.
http://dx.doi.org/10.1016/j.ijpsycho.2005.03.018
[26] Kawasaki, M., Kitajo, K. and Yamaguchi, Y. (2010) Dynamic Links between Theta Executive Functions and Alpha Storage Buffers in Auditory and Visual Working Memory. European Journal of Neuroscience, 31, 1683-1689.
http://dx.doi.org/10.1111/j.1460-9568.2010.07217.x
[27] Kwon, H., Reiss, A.L. and Menon, V. (2002) Neural Basis of Protracted Developmental Changes in Visuo-Spatial Working Memory. Proceedings of the National Academy of Sciences of the United States of America, 99, 1336-1341.
http://dx.doi.org/10.1073/pnas.162486399
[28] De Luca, C. and Leventer, R. (2008) Developmental Trajectories of Executive Functions across the Lifespan. In: Anderson, V., Jacobs, R. and Anderson, P., Eds., Executive Functions and the Frontal Lobes: A Lifespan Perspective, Taylor & Francis Group, New York, 23-56.
[29] Wechsler, D. (2003) Escala de Inteligencia Wechsler para Ninos (WISC-IV). Psychological Corporation, San Antonio.
[30] Wechsler, D. (1997) Escala de Inteligencia para Adultos, WAIS-Espanol. El Manual Moderno, Mexico, D.F.
[31] Ostrosky-Solis, F., Gómez, M., Matute, E., Roselli, M., Ardila, A. and Pineda, D. (1997) Neuropsi Atención y Memo- ria. Manual Moderno, México, D.F.
[32] Jasper, H.A. (1958) The Ten-Twenty System of the International Federation of Electroencephalography. Clinical Neurophysiology, 10, 371-375.
[33] Harmony, T., Alba, A., Marroquín, J. and González-Frankenberger, B. (2009) Time-Frequency-Topographic Analysis of Induced Power and Synchrony of EEG Signals during a Go/No-Go Task. International Journal of Psychophysiology, 71, 9-16.
http://dx.doi.org/10.1016/j.ijpsycho.2008.07.020
[34] Herwig, U., Satrapi, P. and Schonfeldt-Lecuona, C. (2003) Using the International 10-20 EEG System for Positioning of Transcranial Magnetic Stimulation. Brain Topography, 16, 95-99.
http://dx.doi.org/10.1023/B:BRAT.0000006333.93597.9d
[35] Guevara, M., Ramos, J., Hernández-González, M., Madera-Carrillo, H. and Corsi-Cabrera, M. (2000) CAPTUSEN: Un sistema para la adquisición computarizada del EEG y los Potenciales Relacionados a Eventos. Revista Mexicana de Psicología, 17, 77-88.
[36] Guevara, M.A., Sanz-Martin, A., Corsi-Cabrera, M., Amezcua-Gutierrez, C. and Hernández-González, M. (2010) CHECASEN: Programa para revisar senales EEG fuera de línea. Revista Mexicana de IngenieríaBiomédica, 31, 135- 141.
[37] Guevara, M.A. and Hernández-González, M. (2009) EEGmagic: Programa para analizar senales electroencefalográficas. Revista Mexicana de Ingeniería Biomédica, 30, 41-53.
[38] Sanz-Martin, A., Hernández-González, M., Guevara, M.A., Santanta, G. and Gumá-Díaz, E. (2014) Efecto del alcohol en la organización eléctrica cerebral durante una tarea de memoria de trabajo visuoespacial y su relación con el ciclo menstrual. Revista de Neurología, 58, 103-112.
[39] Orsini, A., Chiacchio, I., Cinque, M., Cocchiaro, C., Schiappa, O. and Grossi, D. (1986) Effects of Age, Education and Sex on Two Test of Immediate Memory: A Study of Normal Subjects from 20 to 99 Years Old. Perceptual and Motor Skills, 63, 727-732.
http://dx.doi.org/10.2466/pms.1986.63.2.727
[40] Antunes, R., Zachi, E., Roque, D., Taub, A. and Fix, D. (2011) Memory Span Measured by the Spatial Span Tests of the Cambridge Neuropsychological Test Automated Battery in a Group of Brazilian Children and Adolescents. Dementia Neuropsychologia, 5, 129-134.
[41] Merriam-Webster (1986) Webster’s Third New International Dictionary of the English Language. Merriam-Webster, Springfield.
[42] Chuah, L. and Maybery, M. (1999) Verbal and Spatial Short-Term Memory: Common Sources of Developmental Change? Journal of Experimental Child Psychology, 73, 7-44.
http://dx.doi.org/10.1006/jecp.1999.2493
[43] Salthouse, T. (1992) Influence of Processing Speed on Adult Age Differences in Working Memory. Acta Psycholgica, 79, 155-170.
http://dx.doi.org/10.1016/0001-6918(92)90030-H
[44] Curtis, C., Zald, D. and Pardo, J. (2000) Organization of Working Memory within the Human Prefrontal Cortex: A PET Study of Self-Ordered Object Working Memory. Neuropsychologia, 38, 1503-1510.
http://dx.doi.org/10.1016/S0028-3932(00)00062-2
[45] Rypma, B., Prabhakaran, V., Desmond, J., Glover, G. and Gabrieli, J. (1999) Load-Dependent Roles of Frontal Brain Regions in the Maintenance of Working Memory. Neuroimage, 9, 216-226.
http://dx.doi.org/10.1006/nimg.1998.0404
[46] Tsujimoto, S., Yamamoto, T., Kawaguchi, H., Koizumi, H. and Sawaguchi, T. (2004) Prefrontal Cortical Activation Associated with Working Memory in Young Adults and Preschool Children: An Event-Related Optical Topography Study. Cerebral Cortex, 14, 703-712.
http://dx.doi.org/10.1093/cercor/bhh030
[47] Baker, S.C., Rogers, R.D., Owen, A.M., Frith, C.D., Dolan, R.J., Frackowiak, R.S.J. and Robbins, T.W. (1996) Neural Systems Engaged by Planning: A PET Study of the Tower of London Task. Neuropsychologia, 34, 515-526.
http://dx.doi.org/10.1016/0028-3932(95)00133-6
[48] Braver, T., Cohen, J., Nystrom, L., Jonides, J., Smith, E. and Noll, D. (1997) A Parametric Study of Prefrontal Cortex Involvement in Human Working Memory. Neuroimage, 5, 49-62.
http://dx.doi.org/10.1006/nimg.1996.0247
[49] Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P. and Winkler, T. (1999) “Paradoxical” Alpha Synchronization in a Memory Task. Cognitive Brain Research, 7, 493-501.
http://dx.doi.org/10.1016/S0926-6410(98)00056-1
[50] Tallon-Baudry, C., Kreiter, A. and Bertrand, O. (1999) Sustained and Transient Oscillatory Responses in the Gamma and Beta Bands in a Visual Short-Term Memory Task in Humans. Visual Neuroscience, 16, 449-459.
http://dx.doi.org/10.1017/S0952523899163065
[51] Kessels, R., van der Berg, E., Ruis, C. and Brands, A. (2008) The Backward Span of the Corsi Block-Tapping Task and Its Association with the WAIS-III Digit Span. Assessment, 15, 426-434.
http://dx.doi.org/10.1177/1073191108315611
[52] Klingberg, T., Forssberg, H. and Wersterberg, H. (2002) Increased Brain Activity in Frontal and Parietal Cortex Underlies the Development of Visuospatial Working Memory Capacity during Childhood. Journal of Cognitive Neuroscience, 14, 1-10.
http://dx.doi.org/10.1162/089892902317205276
[53] Scherf, S., Sweeney, J. and Luna, B. (2006) Brain Basis of Developmental Change in VWM. Journal of Cognitive Neuroscience, 18, 1045-1058.
http://dx.doi.org/10.1162/jocn.2006.18.7.1045
[54] Luna, B., Thulborn, K., Munoz, D., Merriam, E., Garver, K., Minshew, N., Keshavan, C.R., Genovese, W.F.E. and Sweeney, J.A. (2001) Maturation of Widely Distributed Brain Function Subserves Cognitive Development. Neuroimage, 13, 786-793.
http://dx.doi.org/10.1006/nimg.2000.0743
[55] Libertus, M., Branon, E. and Pelphrey, K. (2009) Developmental Changes in Category-Specific Brain Responses to Numbers and Letters in a Working Memory Task. Neuroimage, 44, 1404-1414.
http://dx.doi.org/10.1016/j.neuroimage.2008.10.027
[56] Sowell, E., Thompson, P., Tessner, K. and Toga, A. (2001) Mapping Continued Brain Growth and Gray Matter Density Reduction in Dorsal Frontal Cortex: Inverse Relationships during Post-Adolescent Brain Maturation. The Journal of Neuroscience, 21, 8819-8829.
[57] Olesen, P., Nagy, Z., Westerberg, H. and Klingberg, T. (2003) Combined Analysis of DTI and fMRI Data Reveals a Joint Maturation of White and Grey Matter in a Fronto-Parietal Network. Cognitive Brain Research, 18, 48-57.
http://dx.doi.org/10.1016/j.cogbrainres.2003.09.003
[58] Baddeley, A. (1998) Recent Developments in Working Memory. Current Opinion in Neurobiology, 8, 234-238.
http://dx.doi.org/10.1016/S0959-4388(98)80145-1
[59] Weiss, S., Mueller, H., Schack, B., King, J., Kutas, M. and Rappelsberger, P. (2005) Increased Neuronal Communication Accompanying Sentence Comprehension. International Journal of Psychophysiology, 57, 129-141.
http://dx.doi.org/10.1016/j.ijpsycho.2005.03.013
[60] Roopun, A., Cunningham, M., Racca, C., Alter, K., Traub, R. and Whittington, M. (2008) Region-Specific Changes in Gamma and Beta2 Rhythms in NMDA Receptor Dysfunction Models of Schizophrenia. Schizophrenia Bulletin, 34, 962-973.
http://dx.doi.org/10.1093/schbul/sbn059
[61] Gevins, A., Smith, M., McEvoy, L. and Yu, D. (1997) High-Resolution EEG Mapping of Cortical Activation Related to Working Memory: Effects of Task Difficulty, Type of Processing, and Practice. Cerebral Cortex, 7, 374-385.
http://dx.doi.org/10.1093/cercor/7.4.374

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.