Study of Decoherence of Entangled States Made up of Two Basic States in a Linear Chain of Three Qubits


Using Lindblad approach to study decoherence of quantum systems, we study the decoherence and decay of entangled states, formed by two basic states of a chain of thee qubits. We look on these states for a possible regular dependence on their decay as a function of their energy separation between the basic states under different types of environments. We didn’t find regular or significant dependence on this energy separation for the type of environment considered.

Share and Cite:

Velázquez, G. and Cabrera, G. (2015) Study of Decoherence of Entangled States Made up of Two Basic States in a Linear Chain of Three Qubits. Journal of Modern Physics, 6, 1701-1710. doi: 10.4236/jmp.2015.611172.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Caldeira, A.O. and Legget, A.T. (1983) Physica A, 121, 587-616.
[2] Hu, B.L., Paz, J.P. and Zhang, Y. (1992) Physical Review D, 45, 2843.
[3] Venugopalan, A. (1997) Physical Review A, 56, 4307.
[4] Breuer, H.-P. and Petruccione, F. (2007) The Theory of Open Quantum Systems. Oxford University Press, London.
[5] Haroche, S. and Raymond, J.M. (2006) Exploring the Quantum. Oxford University Press, London.
[6] Zurek, W.H. (1991) Physics Today, 44, 36.
[7] Zurek, W.H. (2003) Reviews of Modern Physics, 75, 715.
[8] Zeh, H.D. (1973) Foundation of Physics, 3, 109-116.
[9] Zurek, W.H. (2002) Los Alamos Science, 27.
[10] Lindblad, G. (1976) Communications in Mathematical Physics, 48, 119-130.
[11] Allard, P., Helgstrand, M. and Häre, T. (1998) Journal of Magnetic Resonance, 134, 7-16.
[12] Sumanta, D. and Agarwal, G.S. (2009) Journal of Physics B: Atomic, Molecular and Optical Physics, 42, Article ID: 229801.
[13] Berman, G.P., Doolen, D.D., Kamenev, D.I., López, G.V. and Tsifrinovich, V.I. (2002) Contemporary Mathematics, 305, 13-41.
[14] López, G.V., Quezada, J., Berman, G.P., Doolen, D.D. and Tsifrinovich, V.I. (2003) Journal of Optics B: Quantum and Semiclassical Optics, 5, 184-189.
[15] López, G.V., Gorin, T. and Lara, L. (2008) Journal of Physics B: Atomic, Molecular and Optical Physics, 41, Article ID: 055504.
[16] López, G.V. and López, P. (2012) Journal of Modern Physics, 3, 85-101.
[17] Lloyd, S. (1993) Science, 261, 1569-1571.
[18] Fano, U. (1957) Reviews of Modern Physics, 29, 74.
[19] von Neumann, J. (1927) Göttinger Nachrichten, 1, 245-272.
[20] Davies, E.B. (1976) Quantum Theory of Open Systems. Academic Press, San Diego.
[21] Alicki, R. and Lendi, K. (2007) Quantum Dynamical Semigroups and Applications. Lecture Notes in Physics, Vol. 717, Springer, Berlin.
[22] Huber, M. and Mintert, F. (2010) Physical Review Letters, 104, Article ID: 210501.
[23] Seevinck, M. and Uffink, J. (2008) Physical Review A, 78, Article ID: 032101.
[24] Ma, Z.-H., Chen, Z.-H., Chen, J.-L., Spengler, C., Gabriel, A. and Huber, M. (2011) Physical Review A, 83, Article ID: 062325.
[25] Nielsen, M. and Chuang, I. (2004) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.