[1]
|
Nigam, P.S. and Singh, A. (2011) Production of Liquid Biofuels from Renewable Resources. Progress in Energy and Combustion Science, 37, 52-68. http://dx.doi.org/10.1016/j.pecs.2010.01.003
|
[2]
|
Yuste, A.J. and Dorado, M.P. (2006) A Neural Network Approach to Simulate Biodiesel Production from Waste Olive Oil. Energy & Fuels, 20, 399-402. http://dx.doi.org/10.1021/ef050226t
|
[3]
|
Ratledge, C. and Wynn, J.P. (2002) The Biochemistry and Molecular Biology of Lipid Accumulation in Oleaginous Microorganisms. Advances in Applied Microbiology, 51, 1-51. http://dx.doi.org/10.1016/S0065-2164(02)51000-5
|
[4]
|
Huang, C., Chen, X.F., Xiong, L., Chen, X.D., Ma, L.L. and Chen, Y. (2013) Single Cell Oil Production from Low-Cost Substrates: The Possibility and Potential of Its Industrialization. Biotechnology Advances, 31, 129-139.
http://dx.doi.org/10.1016/j.biotechadv.2012.08.010
|
[5]
|
Zhang, G., French, W.T., Hernandez, R., Hall, J., Sparks, D. and Holmes, W.E. (2011) Microbial Lipid Production as Biodiesel Feedstock from N-Acetylglucosamine by Oleaginous Microorganisms. Journal of Chemical Technology and Biotechnology, 86, 642-650. http://dx.doi.org/10.1002/jctb.2592
|
[6]
|
Mondala, A.H., Hernandez, R., French, T., Mcfarland, L., Domingo, J.W.S., Meckes, M., Ryu, H. and Iker, B. (2012) Enhanced Lipid and Biodiesel Production from Glucose-Fed Activated Sludge: Kinetics and Microbial Community Analysis. AIChE Journal, 58, 1279-1290. http://dx.doi.org/10.1002/aic.12655
|
[7]
|
Shields-Menard, S.A., Amirsadeghi, M., Sukhbaatar, B., Revellame, E., Hernandez, R., Donaldson, J.R. and French, W.T. (2015) Lipid Accumulation by Rhodococcus rhodochrous Grown on Glucose. Journal of Industrial Microbiology and Biotechnology, 42, 693-699. http://dx.doi.org/10.1007/s10295-014-1564-7
|
[8]
|
Taherzadeh, M.J. and Karimi, K. (2007) Acid-Based Hydrolysis Processes for Ethanol from Lignocellulosic Materials: A Review. BioResources, 2, 472-499.
|
[9]
|
Papanikolaou, S. and Aggelis, G. (2002) Lipid Production by Yarrowia lipolytica Growing on Industrial Glycerol in a Single-Stage Continuous Culture. Bioresource Technology, 82, 43-49.
http://dx.doi.org/10.1016/S0960-8524(01)00149-3
|
[10]
|
Schneider, T., Graeff-Hönninger, S., French, W.T., Hernandez, R., Claupein, W., Holmes, W.E. and Merkt, N. (2012) Screening of Industrial Wastewaters as Feedstock for the Microbial Production of Oils for Biodiesel Production and High-Quality Pigments. Journal of Combustion, 2012, Article ID: 153410. http://dx.doi.org/10.1155/2012/153410
|
[11]
|
Hall, J., Hetrick, M., French, T., Hernandez, R., Donaldson, J., Mondala, A. and Holmes, W. (2011) Oil Production by a Consortium of Oleaginous Microorganisms Grown on Primary Effluent Wastewater. Journal of Chemical Technology and Biotechnology, 86, 54-60. http://dx.doi.org/10.1002/jctb.2506
|
[12]
|
Ince, B.K., Ince, O. and Cetecioglu, Z. (2011) Pollution Prevention in the Pulp and Paper Industries. INTECH Open Access Publisher.
|
[13]
|
Poudel, S.R., Marufuzzaman, M., Ekşioglu, S.D., Amir Sadeghi, M. and French, T. (2015) Supply Chain Network Model for Biodiesel Production via Wastewaters from Paper and Pulp Companies. In: Poudel, S.R., Marufuzzaman, M., Ekşioglu, S.D., AmirSadeghi, M. and French, T., Eds., Handbook of Bioenergy, Springer International Publishing, Berlin, 143-162. http://dx.doi.org/10.1007/978-3-319-20092-7_6
|
[14]
|
Pokhrel, D. and Viraraghavan, T. (2004) Treatment of Pulp and Paper Mill Wastewater—A Review. Science of The Total Environment, 333, 37-58. http://dx.doi.org/10.1016/j.scitotenv.2004.05.017
|
[15]
|
EPA Standard Method 5220 D, Standard Methods for the Examination of Water and Wastewater, 20th Edition.
|
[16]
|
Bligh, E.G. and Dyer, W.J. (1959) A Rapid Method for Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917. http://dx.doi.org/10.1139/o59-099
|
[17]
|
Revellame, E.D., Hernandez, R., French, W., Holmes, W.E., Benson, T.J., Pham, P.J., Forks, A. and Callahan II, R. (2012) Lipid Storage Compounds in Raw Activated Sludge Microorganisms for Biofuels and Oleochemicals Production. RSC Advances, 2, 2015-2031. http://dx.doi.org/10.1039/c2ra01078j
|
[18]
|
Christie, W.W. (1993) Preparation of Ester Derivatives of Fatty Acids for Chromatographic Analysis. Advances in Lipid Methodology, 2, 69-111.
|
[19]
|
Revellame, E., Hernandez, R., French, W., Holmes, W. and Alley, E. (2010) Biodiesel from Activated Sludge through in Situ Transesterification. Journal of Chemical Technology and Biotechnology, 85, 614-620.
http://dx.doi.org/10.1002/jctb.2317
|
[20]
|
Mondala, A., Hernandez, R., Holmes, W., French, T., Mcfarland, L., Sparks, D. and Haque, M. (2013) Enhanced Microbial Oil Production by Activated Sludge Microorganisms via Co-Fermentation of Glucose and Xylose. AIChE Journal, 59, 4036-4044. http://dx.doi.org/10.1002/aic.14169
|
[21]
|
Huang, J., Shi, Q., Zhou, X., Lin, Y., Xie, B. and Wu, S. (1998) Studies on The Breeding of Mortierella isabellina Mutant High Producing Lipid and Its Fermentation Conditions. Microbiology, 4, 1-5.
|
[22]
|
Zhao, X., Kong, X., Hua, Y., Feng, B. and Zhao, Z. (Kent) (2008) Medium Optimization for Lipid Production through Co-Fermentation of Glucose and Xylose by the Oleaginous Yeast Lipomyces starkeyi. European Journal of Lipid Science and Technology, 110, 405-412. http://dx.doi.org/10.1002/ejlt.200700224
|
[23]
|
Hu, C., Wu, S., Wang, Q., Jin, G., Shen, H. and Zhao, Z.K. (2011) Simultaneous Utilization of Glucose and Xylose for Lipid Production by Trichosporon cutaneum. Biotechnology for Biofuels, 4, 25.
http://dx.doi.org/10.1186/1754-6834-4-25
|
[24]
|
Zeng, J.J., Zheng, Y.B., Yu, X.C., Yu, L., Gao, D.F. and Chen, S.L. (2013) Lignocellulosic Biomass as a Carbohydrate Source for Lipid Production by Mortierella isabellina. Bioresource Technology, 128, 385-391.
http://dx.doi.org/10.1016/j.biortech.2012.10.079
|
[25]
|
Yang, J., Rasa, E., Tantayotai, P., Scow, K.M., Yuan, H. and Hristova, K.R. (2011) Mathematical Model of Chlorella minutissima UTEX2341 Growth and Lipid Production under Photoheterotrophic Fermentation Conditions. Bioresource Technology, 102, 3077-3082. http://dx.doi.org/10.1016/j.biortech.2010.10.049
|
[26]
|
Luedeking, R. and Piret, E.L. (1959) A Kinetic Study of the Lactic Acid Fermentation. Batch Process at Controlled pH. Journal of Biochemical and Microbiological Technology and Engineering, 1, 393-412.
http://dx.doi.org/10.1002/jbmte.390010406
|
[27]
|
Ruan, Z., Zanotti, M., Wang, X., Ducey, C. and Liu, Y. (2012) Evaluation of Lipid Accumulation from Lignocellulosic Sugars by Mortierella isabellina for Biodiesel Production. Bioresource Technology, 110, 198-205.
http://dx.doi.org/10.1016/j.biortech.2012.01.053
|
[28]
|
Papanikolaou, S., Galiotou-Panayotou, M., Fakas, S., Komaitis, M. and Aggelis, G. (2007) Lipid Production by Oleaginous Mucorales Cultivated on Renewable Carbon Sources. European Journal of Lipid Science and Technology, 109, 1060-1070. http://dx.doi.org/10.1002/ejlt.200700169
|
[29]
|
Sanford, S.D., White, J.M., Shah, P.S., Wee, C., Valverde, M.A. and Meier, G.R. (2009) Feedstock and Biodiesel Cha-racteristics Report. Ames.
|
[30]
|
Bamgboye, A.I. and Hansen, A.C. (2008) Prediction of Cetane Number of Biodiesel Fuel from the Fatty Acid Methyl Ester (FAME) Composition. International Agrophysics, 22, 21-29.
|
[31]
|
Gopinath, A., Puhan, S. and Nagarajan, G. (2009) Theoretical Modeling of Iodine Value and Saponification Value of Biodiesel Fuels from Their Fatty Acid Composition. Renew Energy, 34, 1806-1811.
http://dx.doi.org/10.1016/j.renene.2008.11.023
|
[32]
|
Demirbas, A. (1998) Fuel Properties and Calculation of Higher Heating Values of Vegetable Oils. Fuel, 77, 1117-1120. http://dx.doi.org/10.1016/S0016-2361(97)00289-5
|
[33]
|
Ramos, M.J., Fernández, C.M., Casas, A., Rodríguez, L. and Pérez, á. (2009) Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties. Bioresource Technology, 100, 261-268.
http://dx.doi.org/10.1016/j.biortech.2008.06.039
|