[1]
|
Vestbo, J., Hurd, S.S., Agustí, A.G., Jones, P.W., Vogelmeier, C., Anzueto A., et al. (2013) Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: GOLD Executive Summary. American Journal of Respiratory and Critical Care Medicine, 187, 347-365. http://dx.doi.org/10.1164/rccm.201204-0596PP
|
[2]
|
Mathers, C.D. and Loncar, D. (2006) Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Medicine, 3, e442. http://dx.doi.org/10.1371/journal.pmed.0030442
|
[3]
|
Webb, W.R. (2006) Thin-Section CT of the Secondary Pulmonary Lobule: Anatomy and the Image—The 2004 Fleischer Lecture. Radiology, 239, 322-338. http://dx.doi.org/10.1148/radiol.2392041968
|
[4]
|
Stern, E.J. and Frank, M.S. (1994) CT of the Lung in Patients with Pulmonary Emphysema: Diagnosis, Quantification, and Correlation with Pathologic and Physiologic Findings. American Journal of Roentgenology, 162, 791-798. http://dx.doi.org/10.2214/ajr.162.4.8140992
|
[5]
|
Goddard, P.R., Nicholson, E.M., Laszlo, G. and Watt, I. (1982) Computed Tomography in Pulmonary Emphysema. Clinical Radiology, 33, 379-387. http://dx.doi.org/10.1016/S0009-9260(82)80301-2
|
[6]
|
Koyama, H., Ohno, Y., Yamazaki, Y., Nogami, M., Murase, K., Onishi, Y., et al. (2010) Quantitative and Qualitative Assessments of Lung Destruction and Pulmonary Functional Loss from Reduced-Dose Thin-Section CT in Pulmonary Emphysema Patients. Academic Radiology, 17, 163-168. http://dx.doi.org/10.1016/j.acra.2009.08.009
|
[7]
|
COPDGene CT Workshop Group, Barr, R.G., Berkowitz, E.A., Bigazzi, F., Bode, F., Bon, J., et al. (2012) A Combined Pulmonary-Radiology Workshop for Visual Evaluation of COPD: Study Design, Chest CT Findings and Concordance with Quantitative Evaluation. COPD, 9, 151-159. http://dx.doi.org/10.3109/15412555.2012.654923
|
[8]
|
Sørensen, L., Shaker, S. and de Bruijne, M. (2010) Quantitative Analysis of Pulmonary Emphysema Using Local Binary Patterns. IEEE Transactions on Medical Imaging, 29, 559-569. http://dx.doi.org/10.1109/TMI.2009.2038575
|
[9]
|
Ginsburg, S.B., Lynch, D.A., Bowler, R.P. and Schroeder, J.D. (2012) Automated Texture-Based Quantification of Centrilobular Nodularity and Centrilobular Emphysema in Chest CT Images. Academic Radiology, 19, 1241-1251. http://dx.doi.org/10.1016/j.acra.2012.04.020
|
[10]
|
Xu, Y., van Beek, E.J., Hwanjo, Y., Guo, J., McLennan, G. and Hoffman, E.A. (2006) Computer-Aided Classification of Interstitial Lung Diseases via MDCT: 3D Adaptive Multiple Feature Method (3D AMFM). Academic Radiology, 13, 969-978. http://dx.doi.org/10.1016/j.acra.2006.04.017
|
[11]
|
Sluimer, I.C., van Waes, P.F., Viergever, M.A. and van Ginneken, B. (2003) Computer-Aided Diagnosis in High Resolution CT of the Lungs. Medical Physics, 30, 3081-3090. http://dx.doi.org/10.1118/1.1624771
|
[12]
|
Sørensen, L., Nielsen, M., Lo, P., Ashraf, H., Pedersen, J.H. and de Bruijne, M. (2012) Texture-Based Analysis of COPD: A Data-Driven Approach. IEEE Transactions on Medical Imaging, 31, 70-78. http://dx.doi.org/10.1109/TMI.2011.2164931
|
[13]
|
Sørensen, L., Loog, M., Lo, P., Ashraf, H., Dirksen, A., Duin, R.P., et al. (2010) Image Dissimilarity-Based Quantification of Lung Disease from CT. Medical Image Computing and Computer-Assisted Intervention, 13, 37-44.
|
[14]
|
Prasad, M., Sowmya, A. and Wilson, P. (2009) Multi-Level Classification of Emphysema in HRCT Lung Images. Pattern Analysis and Applications, 12, 9-20. http://dx.doi.org/10.1007/s10044-007-0093-7
|
[15]
|
Chabat, F., Yang, G.Z. and Hansell, D.M. (2003) Obstructive Lung Diseases: Texture Classification for Differentiation at CT. Radiology, 228, 871-877. http://dx.doi.org/10.1148/radiol.2283020505
|
[16]
|
Uppaluri, R., Mitsa, T., Sonka, M., Hoffman, E.A. and McLennan, G. (1997) Quantification of Pulmonary Emphysema from Lung Computed Tomography Images. American Journal of Respiratory and Critical Care Medicine, 156, 248-254. http://dx.doi.org/10.1164/ajrccm.156.1.9606093
|
[17]
|
Ojala, T., Pietikäinen, M. and Mäenpää, T. (2002) Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 971-987. http://dx.doi.org/10.1109/TPAMI.2002.1017623
|
[18]
|
National Lung Screening Trial Research Team, Aberle, D.R., Adams, A.M., Berg, C.D., Black, W.C., Clapp, J.D., et al. (2011) Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. New England Journal of Medicine, 65, 395-409.
|
[19]
|
Zurawska, J.H., Jen, R., Lam, S., Coxson, H.O., Leipsic, J. and Sin, D.D. (2012) What to Do When a Smoker’s CT Scan is “Normal”?: Implications for Lung Cancer Screening. Chest, 141, 1147-1152. http://dx.doi.org/10.1378/chest.11-1863
|
[20]
|
Zulueta, J.J., Wisnivesky, J.P., Henschke, C.I., Yip, R., Farooqi, A.O., McCauley, D.I., et al. (2012) Emphysema Scores Predict Death from COPD and Lung Cancer. Chest, 141, 1216-1223. http://dx.doi.org/10.1378/chest.11-0101
|
[21]
|
Guo, Z.H., Zhang, L. and Zhang, D. (2010) A Completed Modeling of Local Binary Pattern Operator for Texture Classification. IEEE Transactions on Image Processing, 19, 1657-1663. http://dx.doi.org/10.1109/TIP.2010.2044957
|
[22]
|
Tan, X. and Triggs, B. (2010) Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions. IEEE Transactions on Image Processing, 19, 1635-1650. http://dx.doi.org/10.1109/TIP.2010.2042645
|
[23]
|
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R. and Lin, C.-J. (2008) LIBLINEAR: A Library for Large Linear Classification. Journal of Machine Learning Research, 9, 1871-1874.
|
[24]
|
Müller, N.L., Staples, C.A., Miller, R.R. and Abboud, R.T. (1988) “Density Mask”: An Objective Method to Quantitate Emphysema Using Computed Tomography. Chest, 94, 782-787. http://dx.doi.org/10.1378/chest.94.4.782
|
[25]
|
Willemink, M.J., Leiner, T., de Jong, P.A., de Heer, L.M., Nievelstein, R.A., Schilham, A.M., et al. (2013) Iterative Reconstruction Techniques for Computed Tomography Part 2: Initial Results in Dose Reduction and Image Quality. European Radiology, 23, 1632-1642. http://dx.doi.org/10.1007/s00330-012-2764-z
|
[26]
|
Nishio, M., Matsumoto, S., Seki, S., Koyama, H., Ohno, Y., Fujisawa, Y., et al. (2014) Emphysema Quantification on Low-Dose CT Using Percentage of Low-Attenuation Volume and Size Distribution of Low-Attenuation Lung Regions: Effects of Adaptive Iterative Dose Reduction Using 3D Processing. European Journal of Radiology, 83, 2268-2276. http://dx.doi.org/10.1016/j.ejrad.2014.09.011
|