The Surface Reactivity of Pure and Monohydrogenated Nanocones Formed from Graphene Sheets


A systematic computational study of surface reactivity for pure and mono-hydrogenated carbon nanocoes (CNCs) formed from graphene sheets as functions of disclination angle, cone size and hydrogenation sites has been investigated through density functional (DFT) calculations and at the B3LYP/3-21G level of theory. Five disclination angles (60°, 120°, 180°, 240° and 300°) are applied and at any disclination angle four structures with different sizes are studied. For comparison, pure and mono-hydrogenated boron nitride nanocones (BNNCs) with disclination angles 60°, 120°, 180°, 240° and 300° are also investigated. The hydrogenation is done on three different sites, HS1 (above the first neighbor atom of the apex atoms), HS2 (above one atom of the apex atoms) and HS3 (above one atom far from the apex atoms). Our calculations show that the highest surface reactivity for pure CNCs and BNNCs at disclination angles 60°, 180° and 300° is 23.50 Debye for B41N49H10 cone and at disclination angles 120° and 240° is 15.30 Debye for C94H14 cone. For mono-hydrogenated CNCs, the highest surface reactivity is 22.17 Debye for C90H10-HS3 cone at angle 300° and for mono-hydrogenated BNNCs the highest surface reactivity is 28.97 Debye for B41N49H10-HS1 cone when the hydrogen atom is adsorbed on boron atom at cone angle 240°.

Share and Cite:

El-Barbary, A.A., Kamel, M.A., Eid, K.M., Taha, H.O., Mohamed, R.A. and Al-Khateeb, M.A. (2015) The Surface Reactivity of Pure and Monohydrogenated Nanocones Formed from Graphene Sheets. Graphene, 4, 75-83. doi: 10.4236/graphene.2015.44008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Liao, M.L. (2012) Preparation of Ni/Cu Composite Nanowires. Journal of Nanoparticle Research, 14, 837.
[2] Gotzias, A., Heiberg-Andersen, H., Kainourgiakis, Th. and Steriotis, M. (2011) Study of Hydrogen Adsorption in Nano-Structured Carbon Materials, with a Combination of Experimental Methods and Monte Carlo Simulations. Carbon, 49, 2715-2724.
[3] Mirzaei, M. (2013) Investigating Pristine and Carbon-Decorated Silicon Nanocones: DFT Studies. Superlattices and Microstructures, 58, 130-134.
[4] Esrafili, M.D. and Mahdavinia, G. (2013) Nitrogen-Doped (6,0) and (4,4) Single-Walled SiC Nanotubes: A DFT Study on Surface Reactivity and NMR Parameters. Superlattices and Microstructures, 62, 140-148.
[5] Yu, X. and Raaen, S. (2013) The Influence of Potassium Doping on Hydrogen Adsorption on Carbon Nanocone Material Studied by Thermal Desorption and Photoemission. Applied Surface Science, 270, 364-369.
[6] Nouri, A. and Mirzaei, M. (2009) A Detailed Theoretical Study of the Interaction of Thiourea with Cis-Diaqua (Ethylenediamine) Platinum(II). Journal of Molecular Structure: THEOCHEM, 913, 207-209.
[7] Qu, C.Q., Qiao, L., Wang, C., Yu, S.S., Jiang, Q. and Zheng, W.T. (2010) Experimental and Theoretical Studies on the Magnetic Property of Carbon-Doped ZnO. Physics Letters A, 374, 782-787.
[8] Yu, X., Tverdal, M., Raaen, S., Helgesen, G. and Knudsen, K.D. (2008) Hydrogen Storage in Carbon Cones. Applied Surface Science, 255, 1906-1910.
[9] Azevedo, S. (2004) Spin Polarization in Carbon Nanostructures with Disclinations. Physics Letters A, 325, 283-286.
[10] Baei, M.T., Peyghan, A.A., Bagheri, Z. and Tabar, M.B. (2012) DFT Study of NH3 Adsorption on Pristine, Ni- and Si- Doped Graphynes. Physics Letters A, 377, 107-111.
[11] Mirzaei, M. and Meskinfam, M. (2011) Computational Studies of Effects of Tubular Lengths on the NMR Properties of Pristine and Carbon Decorated Boron Phosphide Nanotubes. Solid State Sciences, 13, 1926-1930.
[12] Ge, M. and Sattler, K. (1994) Bundles of Carbon Nanotubes Generated by Vapor-Phase Growth. Applied Physics Letters, 64, 710.
[13] Ge, M. and Sattler, K. (1994) Observation of Fullerene Cones. Chemical Physics Letters, 220, 192-196.
[14] Merkulov, V.I., Melechko, A.V., Guillom, M.A., Lowndes, D.H. and Simpson, M.L. (2011) Sharpening of Carbon Nanocone Tips during Plasma-Enhanced Chemical Vapor Growth. Chemical Physics Letters, 350, 381-385.
[15] Shenderova, O.A., Lawson, B.L., Areshkin, D. and Brenner, D.W. (2001) Predicted Structure and Electronic Properties of Individual Carbon Nanocones and Nanostructures Assembled from Nanocones. Nanotechnology, 12, 191.
[16] Baylor, L.R., Merkulov, V.I., Ellis, E.D., Guillorn, M.A., Lowndes, D.H., Melechko, A.V., Simpson, M.L. and Whealton, J.H. (2002) Field Emission from Isolated Individual Vertically Aligned Carbon Nanocones. Journal of Applied Physics, 91, 4602-4606.
[17] Lu, X., Yang, Q., Xiao, C. and Hirose, A. (2006) Field Electron Emission of Carbon-Based Nanocone Films. Applied Physics A, 82, 293-296.
[18] Bonard, J.M., Gaal, R., Garaj, S., Thien-Nga, L., Forro, L., Takahashi, K., Kokai, F., Yudasaka, M. and Iijima, S. (2002) Field Emission Properties of Carbon Nanohorn Films. Journal of Applied Physics, 91, Article ID: 10107.
[19] Saito, Y., Tsujimoto, Y., Koshio, A. and Kokai, F. (2007) Field Emission Patterns from Multiwall Carbon Nanotubes with a Cone-Shaped Tip. Applied Physics Letters, 90, Article ID: 213108.
[20] McGuire, K., Gothard, N., Gai, P.L., Dresselhaus, M.S., Sumanasekera, G. and Rao, A.M. (2005) Synthesis and Raman Characterization of Boron-Doped Single-Walled Carbon Nanotubes. Carbon, 43, 219-227.
[21] Cruz-Silva, E., Cullen, D.A., Gu, L., Romo-Herrera, J.M., Munoz-Sandoval, E., Lopez-Urias, F., Sumpter, B.G., Meunier, V., Charlier, J.C., Smith, D.J., Terrrones, H. and Terrones, M. (2008) Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorus-Nitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2, 441-448.
[22] Terrones, M., Souza, A.G. and Rao, A.M. (2008) Nanostructured Photoelectrodes for Solar Powered Applications. In: Jorio, A., Dresselhaus, G. and Dresselhaus, M.S., Eds., Carbon Nanotubes, Topics in Applied Physics, Vol. 111, Springer-Verlag, Berlin, 531-566.
[23] Becke, A.D. (1993) Density Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98, 5648.
[24] Becke, A.D. (1988) Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38, 3098.
[25] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Lamham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S. and Pople, J.A. (2004) Gaussian 2004. Gaussian Inc., Wallingford.
[26] Hindi, A. and EL-Barbary, A.A. (2015) Hydrogen Binding Energy of Halogenated C40 Cage: An Intermediate between Physisorption and Chemisorption. Journal of Molecular Structure, 1080, 169-175.
[27] El-Nahass, M.M., Kamel, M.A., El-Barbary, A.A., El-Mansy, M.A.M. and Ibrahim, M. (2013) FT-IR Spectroscopic Analyses of 3-Methyl-5-Pyrazolone (MP). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 111, 37-41.
[28] Kotz, J.C., Treichel, P. and Weaver, G.C. (2006) Chemistry and Chemical Reactivity. Thomson Brooks/Cole, Pacific Grove.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.