Dynamic, Charge Photogeneration and Excitons Distribution Function in Organic Bulk Heterojunction Solar Cells

DOI: 10.4236/ojapps.2015.58050   PDF   HTML   XML   3,106 Downloads   3,625 Views   Citations

Abstract

In this work, the excitons distribution function in organic bulk hetero junction solar cells, at a depth z has been determined from solving the charge continuity equation, by exploiting the Laplace transform with appropriate boundary conditions. Next, the influence of the electron-hole pair separation distance on the excitons dissociation probability, the internal quantum efficiency and the binding energy, has been studied. The simulated results show that the probability density of the carriers photo generated depends on the generation rate, excitons dissociation and the charge carriers in the cells. The potential improvement of the internal quantum efficiency of charge generation depends on electron-hole pair separation distance, the excitons dissociation probability into free charges and depends strongly on the optical absorption of the photons in the active layer.

Share and Cite:

Madogni, V. , Yang, W. , Kounouhéwa, B. , Agbomahéna, M. , Hounkpatin, S. and Awanou, C. (2015) Dynamic, Charge Photogeneration and Excitons Distribution Function in Organic Bulk Heterojunction Solar Cells. Open Journal of Applied Sciences, 5, 509-525. doi: 10.4236/ojapps.2015.58050.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Tang, C.W. (1987) Organic Electroluminescent Diodes. Applied Physics Letters, 51, 913-915.
http://dx.doi.org/10.1063/1.98799
[2] Kim, J.S., Park, J.H., Lee, J.H., Jo, J., Kim, D.Y. and Cho, K. (2007) Control of the Electrode Work Function and Active Layer Morphology via Surface Modification of Indium Tin Oxide for High Efficiency Organic Photovoltaics. Applied Physics Letters, 91, Article ID: 112111. http://dx.doi.org/10.1063/1.2778548
[3] Arnaud, M. (1012) Ab-Initio Study of the Electronic and optical Properties of an Organic Donor-Acceptor System Used in Photovoltaic Cells. PhD. Dissertation, University of Montréal.
[4] Yu, G., Gao, J., Hummelen, C., Wudl, F. and Heeger, A. J. (1995) Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunction. Science, 270, 1789-1791.
http://dx.doi.org/10.1126/science.270.5243.1789
[5] Green, M.A., Emery, Y.H.K., Warta, W. and Dunlop, E.D. (2012) Solar Cell Efficiency Tables. Progress in Photovoltaics, 20, 12-20. http://dx.doi.org/10.1002/pip.2163
[6] Brabec, C.J., Heeney, M., Mcculloch, I. and Nelson, J. (2011) Influence of Blend Microstructure on Bulk Heterojunction Organic Photovoltaic Performance. Chemical Society Review, 40, 1185-1199.
http://dx.doi.org/10.1039/C0CS00045K
[7] Mayer, A.C., Scully, S.R., Hardin, B.E., Rowell, M.W. and Mcgehee, M.D. (2007) Polymer-Based Solar Cells. Materials Today, 10, 28-33. http://dx.doi.org/10.1016/S1369-7021(07)70276-6
[8] Marchiori, C. and Koehler, M. (2010) Dipole Assisted Exciton Dissociation at Conjugated Polymer/Fullerene Photovoltaic Interfaces: A Molecular Study Using Density Functional Theory Calculations. Synthetic Metals, 160, 643-650. http://dx.doi.org/10.1016/j.synthmet.2009.12.026
[9] Scharber, M., Möuhlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J. and Brabec, C.J. (2006) Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency. Advanced Materials, 18, 789-794. http://dx.doi.org/10.1002/adma.200501717
[10] Zhang, F., Johansson, M, Andersson, M.R., Hummelen, J.C. and Inganäs, O. (2002) Polymer Photovoltaic Cells with Conducting Polymer Anodes. Advanced Materials, 14, 662-665.
http://dx.doi.org/10.1002/1521-4095(20020503)14:9<662::AID-ADMA662>3.0.CO;2-N
[11] Tang, H., Lefevre, S.W., Ryu, C.Y. and Bao, Z. (2007) Solubility-Driven Thin Film Structures of Regioregular Poly (3-hexyl thiophene) Using Volatile Solvents. Applied Physics Letters, 90, Article ID: 172116.
http://dx.doi.org/10.1063/1.2734387
[12] Kulkami, A.P., Noone, K.M., Munechika, K., Guyer, S.R. and Ginger, D.S. (2010) Plasmon-Enhanced Charge Carrier Generation in Organic Photovoltaic Films Using Silver Nanoprisms. Nano Letters, 10, 1501-1505.
http://dx.doi.org/10.1021/nl100615e
[13] Xue, M., Li, L., De Villers, B.J.T., Zhu, H., Zhu, J., Yu, Z., Stieg, A.Z., Pei, Q., Schwartz, B.J. and Wang, K.L. (2011) Charge-Carrier Dynamics in Hybrid Plasmonic Organic Solar Cells with Ag Nanoparticles. Applied Physics Letters, 98, 253-302. http://dx.doi.org/10.1063/1.3601742
[14] Wang, D.H., Kim, D.Y., Choi, K.W., Seo, J.H., Im, S.H., Park, J.H., Park, O.O. and Heeger, A.J. (2011) Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles. Angewandte Chemie International Edition, 50, 5519-5523.
http://dx.doi.org/10.1002/anie.201101021
[15] Wang, C.C.D., Choy, W.C.H., Duan, C., Fung, D.D.S., Sha, W.E.I., Xie, F.X., Huang, F. and Cao, Y. (2012) Optical and Electrical Effects of Gold Nanoparticles in the Active Layer of Polymer Solar Cells. Journal of Materials Chemistry, 22, 1206-1211. http://dx.doi.org/10.1039/C1JM14150C
[16] Zhu, J., Xue, M., Hoekstra, R., Xiu, F., Zeng, B. and Wang, K.L. (2012) Light Concentration and Redistribution in Polymer Solar Cells by Plasmonic Nanoparticles. Nanoscale, 4, 1978-1981.
http://dx.doi.org/10.1039/c2nr11920j
[17] Born, M. and Wolf, E. (1999) Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light. Cambridge University Press, London.
http://dx.doi.org/10.1017/CBO9781139644181
[18] Zhang, C., You, H., Hao, Y., Lin, Z. and Zhu, C. (2011) Effects of Optical Interference and Annealing on the Performance of Polymer/Fullerene Bulk Heterojunction. Solar Cells, 512.
[19] Yang, W., Li, D., Yao, Y., Hou, X. and Wu, C.Q. (2012) Enhanced Surface Losses of Organic Solar Cells Induced by Efficient Polaron Pair Dissociation at the Metal/Organic Interface. Journal of Applied Physics, 112, Article ID: 034510. http://dx.doi.org/10.1063/1.4745022
[20] De Falco, C., Jerome, J.W. and Sacco, R. (2009) Quantum Corrected Drift-Diffusion Models: Solution Fixed Map and Finite Element Approximation. Journal of Computational Physics, 228, 1770-1789.
http://dx.doi.org/10.1016/j.jcp.2008.11.010
[21] Waldauf, C., Schilinsky, P., Perisutti, M. and Brabec, C.J. (2003) Solution-Processed Organic N-Type Thin-Film Transistors. Advanced Materials, 15, 2084-2088. http://dx.doi.org/10.1002/adma.200305623
[22] Monestier, F., Simon, J.J., Torchio, P., Escoubas, L., Flory, F., Bailly, S., Bettignies, R., Guillerez, S. and Defranoux, C. (2007) Modeling the Short-Circuit Current Density of Polymer Solar Cells Based on P3HT: PCBM Blend. Solar Energy Materials and Solar Cells, 91, 405-410.
http://dx.doi.org/10.1016/j.solmat.2006.10.019
[23] Servaites, D.J., Ratner, M.A. and Marks, T.J. (2011) Organic Solar Cells: A New Look at Traditional Models. Energy Environmental Science, 4, 4410-4422. http://dx.doi.org/10.1039/c1ee01663f
[24] Agbomahéna, M.B. (2013) Study of the Ageing of Organic Photovoltaic Devices Fabricated in the Ambient Atmosphere. PhD. Dissertation, Joint Supervision between UMons, Belgium and University of Abomey-Calavi, Benin.
[25] Pettersson, L.A.A., Roman, L.S. and Inganäs, O. (1999) Modeling Photocurrent Action Spectra of Photovoltaic Devices Based on Organic Thin Films. Journal of Applied Physics, 86, 487-496.
http://dx.doi.org/10.1063/1.370757
[26] Yoo, S., Domercq, B. and Kippelen, B. (2004) Efficient Thin-Film Organic Solar Cells Based on Pentacene/C60 Heterojunctions. Applied Physics Letters, 85, 5427-5429.
http://dx.doi.org/10.1063/1.1829777
[27] Potscavage Jr., W.J., Sharma, A. and Kippelen, B. (2009) Critical Interfaces in Organic Solar Cells and Their Influence on the Open-Circuit Voltage. Accounts of Chemical Research, 42, 1758-1767.
http://dx.doi.org/10.1021/ar900139v
[28] De-Li, L., Wei, S., Yang, W.C., Yao, Y., Hou, X.Y. and Wu, C.Q. (2012) Spike in Transient Photocurrent of Organic Solar Cell: Exciton Dissociation at Interface. Physics Letters A, 376, 227-230.
http://dx.doi.org/10.1016/j.physleta.2011.11.055
[29] Nelson, J. (2011) Polymer: Fullerene Bulk Heterojunction Solar Cells. Materials Today, 14, 462-470.
http://dx.doi.org/10.1016/S1369-7021(11)70210-3
[30] Spano, F.C., Clark, J., Silva, C. and Friend, R.H. (2009) Determining Exciton Coherence from the Photoluminescence Spectral Line Shape in Poly (3-hexylthiophene) Thin Films. Journal of Chemical Physics, 130, Article ID: 074904. http://dx.doi.org/10.1063/1.3076079
[31] Park, S.H., Roy, A., Beaupré, S., Cho, S., Croates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K. and Heeger, A.J. (2009) Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%. Nature Photonics, 3, 297-303. http://dx.doi.org/10.1038/nphoton.2009.69
[32] Mandoc, M.M., Koster, L.J.A. and Blom, P.W.M. (2007) Optimum Charge Carrier Mobility in Organic Solar Cells. Applied Physics Letters, 90, Article ID: 133504. http://dx.doi.org/10.1063/1.2711534
[33] Onsager, L. (1934) Deviations from Ohm’s Law in Weak Electrolytes. Journal of Chemical Physics, 2, 599-615. http://dx.doi.org/10.1063/1.1749541
[34] Braun, C.L. (1984) Electric Field Assisted Dissociation of Charge Transfer States as a Mechanism of Photo-Carrier Production. Journal of Chemical Physics, 80, 4157-4161. http://dx.doi.org/10.1063/1.447243
[35] Peumans P., Uchida, S. and Forrest, S.R. (2003) Efficient Bulk Heterojunction Photovoltaic Cells Using Small-Mo- lecular-Weight Organic Thin Films. Nature, 425, 158-162.
http://dx.doi.org/10.1038/nature01949
[36] Koster, L.J.A., Smits, E.C.P., Mihailetchi, V.D. and Blom, P.W.M. (2005) Device Model for the Operation of polymer/Fullerene Bulk Heterojunction Solar Cells. Physical Review B, 72, Article ID: 085205.
http://dx.doi.org/10.1103/PhysRevB.72.085205
[37] Günes, S., Neugebauer, H. and Sariciftci, N. (2007) Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews, 107, 1324-1338. http://dx.doi.org/10.1021/cr050149z
[38] Brezzi, F., Marini, L. and Pietra, P. (1989) Numerical Simulation of Semiconductor Devices. Computer Methods in Applied Mechanics and Engineering, 75, 493-514.
http://dx.doi.org/10.1016/0045-7825(89)90044-3
[39] Buxton, G. and Clarke, N. (2007) Computer Simulation of Polymer Solar Cells. Modeling and Simulation in Materials Science and Engineering, 15, 13-26.
[40] Greenham, I.N. (2008) Modeling Photocurrent Transients in Organic Solar Cells. Nanotechnology, 19, Article ID: 424012. http://dx.doi.org/10.1088/0957-4484/19/42/424012
[41] van Mensfoort, S.L.M. and Coehoorn, R. (2008) Effect of Gaussian Disorder on the Voltage Dependence of the Current Density in Sandwich-Type Devices Based on Organic Semiconductors. Physical Review B, 78, Article ID: 085207. http://dx.doi.org/10.1103/PhysRevB.78.085207
[42] van Mensfoort S.L.M., Vulto, S.I.E., Janssen, R.A.J. and Coehoorn, R. (2008) Hole Transport in Polyfluorene-Based Sandwich-Type Devices: Quantitative Analysis of the Role of Energetic Disorder. Physical Review B, 78, Article ID: 085208. http://dx.doi.org/10.1103/PhysRevB.78.085208
[43] Mihailetchi, V.D., Blom, P.W.M., Hummelen, J.C. and Rispens, M.T. (2003) Cathode Dependence of the Open-Circuit Voltage of Polymer: Fullerene Bulk Heterojunction Solar Cells. Journal of Applied Physics, 94, 6849-6854. http://dx.doi.org/10.1063/1.1620683
[44] Cheyns, D., Poortmans, J., Heremans, P., Deibel, C., Verlaak, S., Rand, B.P. and Genoe, J. (2008) Analytical Model for the Open-Circuit Voltage and Its Associated Resistance in Organic Planar Heterojunction Solar Cells. Physical Review B, 77, Article ID: 165332.
http://dx.doi.org/10.1103/PhysRevB.77.165332
[45] Tress, W., Leo, K. and Riede, M. (2012) Optimum Mobility, Contact Properties, and Open-Circuit Voltage of Organic Solar Cells: A Drift-Diffusion Simulation Study. Physical Review B, 85, Article ID: 155201.
http://dx.doi.org/10.1103/PhysRevB.85.155201
[46] Kohler, A. and Beljonne, D. (2004) The Singlet-Triplet Exchange Energy in Conjugated Polymers. Advanced Functional Materials, 14, 11-18. http://dx.doi.org/10.1002/adfm.200305032

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.