A New Symbolic Algorithm for Solving General Opposite-Bordered Tridiagonal Linear Systems

DOI: 10.4236/ajcm.2015.53023   PDF   HTML   XML   4,275 Downloads   4,789 Views   Citations

Abstract

In the current article we propose a new efficient, reliable and breakdown-free algorithm for solving general opposite-bordered tridiagonal linear systems. An explicit formula for computing the determinant of an opposite-bordered tridiagonal matrix is investigated. Some illustrative examples are given.

Share and Cite:

Atlan, F. and El-Mikkawy, M. (2015) A New Symbolic Algorithm for Solving General Opposite-Bordered Tridiagonal Linear Systems. American Journal of Computational Mathematics, 5, 258-266. doi: 10.4236/ajcm.2015.53023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Burden, R.L. and Faires, J.D. (2001) Numerical Analysis. 7th Edition, Books & Cole Publishing, Pacific Grove.
[2] da Fonseca, C.M. and Petronilho, J. (2001) Explicit Inverses of Some Tridiagonal Matrices. Linear Algebra and its Applications, 325, 7-21.
http://dx.doi.org/10.1016/S0024-3795(00)00289-5
[3] El-Mikkawy, M.E.A. (2005) A New Computational Algorithm for Solving Periodic Tri-Diagonal Linear Systems. Applied Mathematics and Computation, 161, 691-696.
http://dx.doi.org/10.1016/S0024-3795(00)00289-5
[4] El-Mikkawy, M.E.A. and Karawia, A. (2006) Inversion of General Tridiagonal Matrices. Applied Mathematics Letters, 19, 712-720.
http://dx.doi.org/10.1016/j.aml.2005.11.012
[5] El-Mikkawy, M. and Atlan, F. (2014) Algorithms for Solving Linear Systems of Equations of Tridiagonal Type via Transformations. Applied Mathematics, 5, 413-422.
http://dx.doi.org/10.4236/am.2014.53042
[6] El-Mikkawy, M. and Atlan, F. (2014) Algorithms for Solving Doubly Bordered Tridiagonal Linear Systems. British Journal of Mathematics & Computer Science, 4, 1246-1267.
http://dx.doi.org/10.9734/BJMCS/2014/8835
[7] El-Mikkawy, M., El-Shehawy, M. and Shehab, N. (2015) Solving Doubly Bordered Tridiagonal Linear Systems via Partition. Applied Mathematics, 6, 967-978.
http://dx.doi.org/10.4236/am.2015.66089
[8] Golub, G.H. and van Loan, C.F. (1996) Matrix Computations. 3rd Edition, Johns Hopkins University Press, Baltimore.
[9] Kavcic, A. and Moura, J.M.F. (2000) Matrices with Banded Inverses: Inversion Algorithms and Factorization of Gauss-Markov Processes. IEEE Transactions on Information Theory, 46, 1495-1509.
http://dx.doi.org/10.1109/18.954748
[10] Li, H.-B., Huang, T.-Z., Liu, X.-P. and Li, H. (2010) On the Inverses of General Tridiagonal Matrices. Linear Algebra and Its Applications, 433, 965-983.
http://dx.doi.org/10.1016/j.laa.2010.04.042
[11] Mazilu, I., Mazilu, D.A. and Williams, H.T. (2012) Applications of Tridiagonal Matrices in Non-Equilibrium Statistical Physics. Electronic Journal of Linear Algebra, 24, 7-17.
[12] Olcayto, E. (1979) Recursive Formulae for Ladder Network Optimization. Electronics Letters, 15, 249-250.
http://dx.doi.org/10.1049/el:19790176
[13] El-Mikkawy, M.E.A. (2004) On the Inverse of a General Tridiagonal Matrix. Applied Mathematics and Computation, 150, 669-679.
http://dx.doi.org/10.1016/S0096-3003(03)00298-4
[14] El-Mikkawy, M.E.A. and El-Desouky, R. (2008) A New Recursive Algorithm for Inverting General Tridiagonal and Anti-Tridiagonal Matrices. Applied Mathematics and Computation, 204, 368-372.
http://dx.doi.org/10.1016/j.amc.2008.06.053
[15] Huang, Y. and McColl, W.F. (1997) Analytic Inversion of General Tridiagonal Matrices. Journal of Physics A, 30, 7919-7933.
http://dx.doi.org/10.1088/0305-4470/30/22/026
[16] Hu, G.Y. and O’Connell, R.F. (1996) Analytical Inversion of Symmetric Tridiagonal Matrices. Journal of Physics A, 29, 1511-1513.
http://dx.doi.org/10.1088/0305-4470/29/7/020
[17] Mallik, R.K. (2001) The Inverse of a Tridiagonal Matrix. Linear Algebra and Its Applications, 325, 109-139.
http://dx.doi.org/10.1016/S0024-3795(00)00262-7
[18] Marrero, J.A., Rachidi, M. and Tomeo, V. (2013) Non-Symbolic Algorithms for the Inversion of Tridiagonal Matrices. Journal of Computational and Applied Mathematics, 252, 3-11.
http://dx.doi.org/10.1016/j.cam.2012.05.003
[19] Ran, R.-S., Huang, T.-Z., Liu, X.-P. and Gu, T.-X. (2009) An Inversion Algorithm for General Tridiagonal Matrix. Applied Mathematics and Mechanics, 30, 247-253.
http://dx.doi.org/10.1007/s10483-009-0212-x
[20] Sugimoto, T. (2012) On an Inverse Formula of a Tridiagonal Matrix. Operators and Matrices, 6, 465-480.
http://dx.doi.org/10.7153/oam-06-30
[21] Usmani, R. (1994) Inversion of a Tridiagonal Jacobi Matrix. Linear Algebra and Its Applications, 212/213, 413-414.
http://dx.doi.org/10.1016/0024-3795(94)90414-6
[22] Yamamoto, T. and Ikebe, Y. (1979) Inversion of Band Matrices. Linear Algebra and Its Applications, 24, 105-111.
http://dx.doi.org/10.1016/0024-3795(79)90151-4
[23] El-Mikkawy, M.E.A. (2004) A Fast Algorithm for Evaluating nth Order Tri-Diagonal Determinants. Journal of Computational and Applied Mathematics, 166, 581-584.
http://dx.doi.org/10.1016/j.cam.2003.08.044
[24] Amar, A.J., Blackwell, B.F. and Edward, J.R. (2006) One-Dimensional Ablation Using a Full Newton’s Method and Finite Control Volume Procedure. 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA-2006-2910, San Francisco, 5-8 June 2006, 26.
http://dx.doi.org/10.2514/6.2006-2910
[25] Amar, A.J., Blackwell, B.F. and Edward, J.R. (2007) One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton’s Method and Finite Control Volume Procedure. 39th AIAA Thermophysics Conference, AIAA-2007-4535, Miami, 25-28 June 2007, 41.
http://dx.doi.org/10.2514/6.2007-4535
[26] Martin, A., Reggio, M., Trepanier, J.Y. and Guo, X. (2007) Transient Ablation Regime in Circuit Breakers. Plasma Science and Technology, 9, 653-656.
http://dx.doi.org/10.1088/1009-0630/9/6/02
[27] Martin, A. and Boyd, I.D. (2008) Simulation of Pyrolysis Gas within a Thermal Protection System. 40th AIAA Thermophysics Conference, AIAA-2008-3805, Seattle, 23-26 June 2008.
http://dx.doi.org/10.2514/6.2008-3805
[28] Martin, A. and Boyd, I.D. (2010) Variant of the Thomas Algorithm for Opposite-Bordered Tridiagonal Systems of Equations. International Journal for Numerical Methods in Biomedical Engineering, 26, 752-759.
[29] Meyer, C.D. (2000) Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia.
http://dx.doi.org/10.1137/1.9780898719512.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.