Gravireception in Phycomyces: Threshold Determination on the Sounding Rocket TEXUS 50

Abstract

Under parabolic flight conditions microgravity is not lower than 3 to 5 times 10-2 g. In contrast to parabolic flights, sounding rocket flights are virtually vibrational-free allowing microgravity as low as 10-5 g. Thus, a rotating platform serving as centrifuge allows the precise generation of gravitational forces ranging from 5 to 100 mg (not possible during parabolic flights). On this basis we determined the threshold1 for optical reflection/absorption changes in Phycomyces to be lower than 25 × 10-3 g. This compares well with the threshold determination of gravitropism in Phycomyces on a clinostat centrifuge. Kinetics of gravity-induced absorption changes and gravity as generated by the on-board centrifuge do not coincide but show a distinctive hysteresis with a latency of 4 s (75 mg-ramp, pull-up).

Share and Cite:

Schmidt, W. (2015) Gravireception in Phycomyces: Threshold Determination on the Sounding Rocket TEXUS 50. Journal of Modern Physics, 6, 1381-1389. doi: 10.4236/jmp.2015.610143.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Schmidt, W. and Galland, P. (2000) Planta, 210, 848-852.
http://dx.doi.org/10.1007/s004250050689
[2] Morita, M.T. (2010) Annual Review of Plant Biology, 61, 705-720.
http://dx.doi.org/10.1146/annurev.arplant.043008.092042
[3] Corrochano, L.M. and Galland, P. (2006) Photomorphogenesis and Gravitropism in Fungi. In: Kues, U. and Fischer, R., Eds., The Mycota I, Growth, Differentiation and Sexuality, Springer-Verlag, Berlin, Heidelberg, 231-257.
http://dx.doi.org/10.1007/3-540-28135-5_13
[4] Sack, F. (1991) International Review of Cytology, 127, 193-252.
http://dx.doi.org/10.1016/S0074-7696(08)60695-6
[5] Kiss, J.Z., Hertel, R. and Sack, F.R. (1989) Planta, 177, 198-206.
http://dx.doi.org/10.1007/BF00392808
[6] Volkmann, D. and Sievers, A. (1979) Graviperception in Multicellular Organs. In: Haupt, W. and Feinleib, M.E., Eds., Encyclopedia of Plant Physiology, Physiology of Movements, Vol. 7, Springer, Berlin, Heidelberg, New York, 573-600.
[7] Sack, F. (1997) Planta, 203, 63-68.
http://dx.doi.org/10.1007/PL00008116
[8] Boonsirichai, K., Guan, C., Chen, R. and Masson, P.H. (2002) Annual Review of Plant Biology, 53, 421-447.
http://dx.doi.org/10.1146/annurev.arplant.53.100301.135158
[9] Dennison, D.S. (1961) The Journal of General Physiology, 45, 23-38.
http://dx.doi.org/10.1085/jgp.45.1.23
[10] Dennison, D.S. and Shropshire Jr., W. (1984) The Journal of General Physiology, 84, 845-859.
http://dx.doi.org/10.1085/jgp.84.6.845
[11] Galland, P., Finger, H. and Wallacher, Y. (2004) Journal of Plant Physiology, 161, 733-739.
http://dx.doi.org/10.1078/0176-1617-01082
[12] Shen-Miller, J., Hinchmann, R.R. and Gordon, S.A. (1968) Plant Physiology, 43, 338-344.
http://dx.doi.org/10.1104/pp.43.3.338
[13] Wabnik, K., Govaerts, W., Friml, J. and Kleine-Vehn, J. (2011) Molecular BioSystems, 7, 2352-2359.
[14] Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Papanov, I., Friml, J., Heidstra, R., Aöda, M., Palme, K. and Scheres, B. (2005) Nature, 433, 39-44.
http://dx.doi.org/10.1038/nature03184
[15] Schmidt, W. and Galland, P. (2004) Plant Physiology, 135, 183-192.
http://dx.doi.org/10.1104/pp.103.033282
[16] Kubelka, P. and Munk, F. (1931) Zeitschrift für Technische Physik, 12, 593-601.
[17] Behrens, H.M., Gradmann, D. and Sievers, A. (1985) Planta, 163, 463-472.
http://dx.doi.org/10.1007/BF00392703
[18] Behrens, H.M., Weisenseel, M.H. and Sievers, A. (1079) Plant Physiology, 70, 1079-1083.
http://dx.doi.org/10.1104/pp.70.4.1079
[19] Björkmann, T. (1988) Botanical Research, 15, 1-41.
http://dx.doi.org/10.1016/S0065-2296(08)60043-9
[20] Sievers, A., Sondag, C., Trebacz, K. and Hejnowicz, Z. (1995) Planta, 197, 392-398.
http://dx.doi.org/10.1007/BF00202662
[21] Shigematsu, H., Toko, K., Matsunoand, T. and Yamafuji, K. (1994) Plant Physiology, 105, 875-880.
[22] Weisenseel, M.H. and Meyer, A.J. (1997) Planta, 203, 98-106.
http://dx.doi.org/10.1007/PL00008122
[23] Schmidt, W. (2004) Microgravity—Science and Technology, 15, 42-48.
http://dx.doi.org/10.1007/BF02870951
[24] Schmidt, W. (2004) Journal of Biochemical and Biophysical Methods, 58, 15-24.
http://dx.doi.org/10.1016/S0165-022X(03)00153-2
[25] Schmidt, W. (2007) Microgravity—Science and Technology, 19, 11-15.
http://dx.doi.org/10.1007/BF02870983
[26] Schmidt, W. (2006) Protoplasma, 229, 125-131.
http://dx.doi.org/10.1007/s00709-006-0217-8
[27] Schmidt, W. (2005) Optical Spectroscopy in Life Sciences and Chemistry: An Introduction. Wiley-VCH, Weinheim, 369.
[28] Schmidt, W. (2011) Microgravity Science and Technology, 23, 356-364.
http://dx.doi.org/10.1007/s12217-010-9255-0
[29] Schmidt, W., Galland, P., Senger, H. and Furuya, M. (1990) Planta, 182, 375-381.
http://dx.doi.org/10.1007/BF02411388
[30] Schmidt, W. and Galland, P. (1999) Planta, 208, 274-282.
http://dx.doi.org/10.1007/s004250050559
[31] Schmidt, W. (2010) Microgravity Science and Technology, 22, 79-85.
http://dx.doi.org/10.1007/s12217-009-9113-0
[32] Johnson, J.B. (1928) Physical Review, 32, 97-109.
http://dx.doi.org/10.1103/PhysRev.32.97

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.