[1]
|
Abedon, S.T. (2008) Phages, Ecology, Evolution. In: Abedon, S.T., Ed., Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses, Chap. 1, Cambridge University Press, Cambridge, 1-30.
http://dx.doi.org/10.1017/CBO9780511541483.004
|
[2]
|
Suttle, C.A. (2007) Marine Viruses—Major Players in the Global Ecosystem. Nature Reviews Microbiology, 5, 801-812. http://dx.doi.org/10.1038/nrmicro1750
|
[3]
|
Williamson, S.J., Cary, S.C., Williamson, K.E., Helton, R.R., Bench, S.R., Winget, D. and Wommack, K.E. (2008) Lysogenic Virus-Host Interactions Predominate at Deep-Sea Diffuse-Flow Hydrothermal Vents. The ISME Journal, 2, 1112-1121. http://dx.doi.org/10.1038/ismej.2008.73
|
[4]
|
Anantharaman, A.K., Duhaime, M., Breier, K., Wendt, J., Toner, B. and Dick, G.J. (2014) Sulfur Oxidation Genes in Diverse Deep-Sea Viruses. Science, 344, 757-760.
|
[5]
|
Ernst, W.G. (1983) The Early Earth and the Archaean Rock Record. In: Schopf, J.W., Ed., Earth’s Earliest Biosphere, Its Origin and Evolution, Princeton University Press, Princeton, 41-52.
|
[6]
|
Rice, G., Tang, L., Stedman, K., Roberto, F., Spuhler, J., Gillitzer, E., Johnson, J.E., Douglas, T. and Young, M. (2004) The Structure of a Thermophilic Archaeal Double-Stranded DNA Viral Capsid Type that Spans All Domains of Life. PNAS, 101, 7495-7496. http://dx.doi.org/10.1073/pnas.0401773101
|
[7]
|
Maaty, W.S., Ortmann, A.C., Dlakic, M., Schulstad, K., Hilmer, J.K., Liepold, L., Weidenheft, B., Khayat, R., Douglas, T., Young, M.J. and Bothner, B. (2006) Characterization of the Archaeal Thermophile Sulfolobus Turreted Icosahedral Virus Validates an Evolutionary Link among Double-stranded DNA Viruses from All Domains of Life. Journal of Virology, 80, 7625-7635. http://dx.doi.org/10.1128/JVI.00522-06
|
[8]
|
Breitbart, M., Wegley, L., Leeds, S., Schoenfeld, T. and Rowher, F. (2004) Phage Community Dynamics in Hot Springs. Applied and Environmental Microbiology, 70, 1633-1640.
http://dx.doi.org/10.1128/AEM.70.3.1633-1640.2004
|
[9]
|
Jiang, S., Steward, G., Jellison, R., Chu, W. and Choi, S. (2004) Abundance, Distribution, and Diversity of Viruses in Alkaline, Hypersaline Mono Lake, California. Microbial Ecology, 47, 9-17.
http://dx.doi.org/10.1007/s00248-003-1023-x
|
[10]
|
Sabet, S., Chu, W. and Jiang, S.C. (2006) Isolation and Genetic Analysis of Haloalkiliphilic Bacteriophages in a North American Soda Lake. Microbial Ecology, 51, 543-554. http://dx.doi.org/10.1007/s00248-006-9069-1
|
[11]
|
Humayoun, S.B., Bano, N. and Hollibaugh, J.T. (2003) Depth Distribution of Microbial Diversity in Mono Lake, a Meromictic Soda Lake in California. Applied and Environmental Microbiology, 69, 1030-1042.
http://dx.doi.org/10.1128/AEM.69.2.1030-1042.2003
|
[12]
|
Chen, F., Lu, J., Binder, B., Liu, Y. and Hodgson, R. (2001) Application of Digital Image Analysis and Flow Cytometry to Enumerate Marine Viruses Stained with SYBR Gold. Applied and Environmental Microbiology, 67, 539-545.
http://dx.doi.org/10.1128/AEM.67.2.539-545.2001
|
[13]
|
Noble, R. and Fuhrman, J.A. (1998) Use of SYBR Green 1 for the Rapid Epifluorescence Counts of Marine Viruses and Bacteria. Aquatic Microbial Ecology, 14, 113-118. http://dx.doi.org/10.3354/ame014113
|
[14]
|
Thingstad, T.F. (1997) A Theoretical Approach to Structuring Mechanisms in the Pelagic Food Web. Hydrobiologia, 363, 59-72. http://dx.doi.org/10.1023/A:1003146310365
|
[15]
|
Thingstad, T.F. (2000) Elements of a Theory for the Mechanisms Controlling Abundance, Diversity, and Bio-Geochemical Role of Lytic Bacterial Viruses in aquatic Ecosystems. Limnology and Oceanography, 45, 1320-1328.
http://dx.doi.org/10.4319/lo.2000.45.6.1320
|
[16]
|
Thingstad, T.F. and Lignell, R. (1997) Theoretical Models for the Control of Bacterial Growth Rate, Abundance, Diversity and Carbon Demand. Aquatic Microbial Ecology, 13, 19-27. http://dx.doi.org/10.3354/ame013019
|
[17]
|
Thingstad, T.F., Bratbak, G. and Heldal, M. (2008) Aquatic Phage Ecology. In: Abedon, S.T., Ed., Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses, Cambridge University Press, Cambridge, 251-280. http://dx.doi.org/10.1017/CBO9780511541483.013
|
[18]
|
Avrani, S., Schwartz, D.A. and Lindell, D. (2012) Virus-Host Swinging Party in the Oceans: Incorporating Biological Complexity into Paradigms of Antagonistic Coexistence. Mobile Genetic Elements, 2, 88-95.
http://dx.doi.org/10.4161/mge.20031
|
[19]
|
Rodriguez-Brito, B., Li, L.L., Wegley, L., Furlan, M., Angly, F., Breitbart, M., Buchanan, J., Desnues, C., Dinsdale, E., Edwards, R., Felts, B., Haynes, M., Liu, H., Lipson, D., Mahaffy, J., Martin-Cuadrado, A.B., Mira, A., Nulton, J., Pasic, L., Rayhawk, S., Rodriguez-Mueller, J., Rodriguez-Valera, F., Salamon, P., Srinagesh, S., Thingstad, T.F., Tran, T., Thurber, R.V., Willner, R., Youle, M. and Rohwer, F. (2010) Viral and Microbial Community Dynamics in Four Aquatic Environments. The ISME Journal, 4, 739-751. http://dx.doi.org/10.1038/ismej.2010.1
|
[20]
|
Garland, J.L. and Mills, A.L. (1991) Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community Level Sole Carbon-Source Utilization. Applied and Environmental Microbiology, 57, 2351-2359.
|
[21]
|
Garland, J.L. (1997) Analysis and Interpretation of Community-Level Physiological Profiles in Microbial Ecology. FEMS Microbiology Ecology, 24, 289-300. http://dx.doi.org/10.1111/j.1574-6941.1997.tb00446.x
|
[22]
|
Lehman, M.R., Colwell, F.S. and Garland, J.L. (1997) Physiological Profiling of Indigenous Aquatic Microbial Communities to Determine Toxic Effects of Metals. Environmental Toxicology and Chemistry, 16, 2232-2241.
http://dx.doi.org/10.1002/etc.5620161106
|
[23]
|
Schoenfeld, T., Patterson, M., Richardson, P.M., Wommack, K.E., Young, D. and Mead, D. (2008) Assembly of Viral Metagenomes from Yellowstone Hot Springs. Applied and Environmental Microbiology, 74, 4164-4174.
http://dx.doi.org/10.1128/AEM.02598-07
|
[24]
|
Wen, K., Ortmann, A.C. and Suttle, C.A. (2004) Accurate Estimation of Viral Abundance by Epifluorescence Microscopy. Applied and Environmental Microbiology, 70, 3862-3867. http://dx.doi.org/10.1128/AEM.70.7.3862-3867.2004
|
[25]
|
Tapper, M.A. and Hicks, R.E. (1998) Temperate Viruses and Lysogeny in Lake Superior Bacterioplankton. Limnology and Oceanography, 43, 95-103http://dx.doi.org/10.4319/lo.1998.43.1.0095
|
[26]
|
Williamson, K.E., Schnitker, J.B., Radosevich, M., Smith, D.W. and Wommack, K.E. (2008) Cultivation-Based Assessment of Lysogeny among Soil Bacteria. Microbial Ecology, 56, 437-447.
http://dx.doi.org/10.1007/s00248-008-9362-2
|
[27]
|
Proctor, B.L. and Gaulden, M.E. (1986) Chemical Stability of Mitomycin C in Culture Medium with and without Fetal Calf Serum as Determined by High Pressure Liquid Chromatography and Mass Spectrometry. Archives of Environmental Contamination and Toxicology, 15, 235-240. http://dx.doi.org/10.1007/BF01059972
|
[28]
|
Hewson, I. and Fuhrman, J.A. (2006) Characterization of Lysogens in Bacterioplankton Assemblages of the Southern California Borderland. Microbial Ecology, 53, 631-638. http://dx.doi.org/10.1007/s00248-006-9148-3
|
[29]
|
Weinbauer, M.G. (2004) Ecology of Prokaryotic Viruses. FEMS Microbiology Reviews, 28, 127-181.
http://dx.doi.org/10.1016/j.femsre.2003.08.001
|
[30]
|
Parada, V., Baudoux, A.-C., Sintes, E., Weinbauer, M. and Herndl, G.J. (2008) Dynamics and Diversity of Newly Produced Virioplankton in the North Sea. The Journal of International Society for Microbial Ecology, 2, 924-936.
http://dx.doi.org/10.1038/ismej.2008.57
|
[31]
|
Brock, T.D. and Brock, M.L. (1968) Relationship between Environmental Temperature and Optimum Temperature of Bacteria along a Hot Spring Thermal Gradient. Journal of Applied Microbiology, 31, 54-58.
|
[32]
|
Winter, C., Smit, A., Herndl, G.J. and Weinbauer, M.G. (2004) Impact of Virioplankton on Archaeal and Bacterial Community Richness as Assessed in Seawater Batch Cultures. Applied and Environmental Microbiology, 70, 804-813.
http://dx.doi.org/10.1128/AEM.70.2.804-813.2004
|
[33]
|
Weinbauer, M.G. and Hofle, M.G. (1998) Distribution and Life Strategies of Two Bacterial Populations in a Eutrophic Lake. Applied and Environmental Microbiology, 64, 3776-3783.
|
[34]
|
Connell, J.H. (1961) The Influence of Interspecific Competition and Other Factors on the Distribution of the Barnacle Chthamalus stellatus. Ecology, 42, 710-723. http://dx.doi.org/10.2307/1933500
|
[35]
|
Riemann, L., Holmfeldt, K. and Titelman, J. (2009) Importance of Viral Lysis and Dissolved DNA for Bacterioplankton Activity in a P-Limited Estuary, Northern Baltic Sea. Microbial Ecology, 57, 286-294.
http://dx.doi.org/10.1007/s00248-008-9429-0
|
[36]
|
Wagner, P.L. and Waldor, M.K. (2002) Bacteriophage Control of Bacterial Virulence. Infection and Immunity, 70, 3985-3993. http://dx.doi.org/10.1128/IAI.70.8.3985-3993.2002
|
[37]
|
Miller, R.V. and Day, M.J. (2008) Contribution of Lysogeny, Pseudolysogeny, and Starvation to Phage Ecology. In: Abedon, S.T., Ed., Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses, Chap. 5, Cambridge University Press, Cambridge, 114-143. http://dx.doi.org/10.1017/CBO9780511541483.008
|
[38]
|
Wilson, M.S., Siering, P.L., White, C.L., Hauser, M.E. and Bartles, A.N. (2008) Novel Archaea and Bacteria Dominate Stable Microbial Communities in North America’s Largest Hot Spring. Microbial Ecology, 56, 292-305.
http://dx.doi.org/10.1007/s00248-007-9347-6
|