[1]
|
Murray, J.D. (2002) Mathematical Biology I: An Introduction. Vol. 17 of Interdisciplinary Applied Mathematics, 3rd Edition, Springer, New York.
|
[2]
|
Wang, X.Y., Zhu, Z.S. and Lu, Y.K. (1990) Solitary Wave Solutions of the Generalised Burgers-Huxley Equation, Journal of Physics A, 23, 271-274. http://dx.doi.org/10.1088/0305-4470/23/3/011
|
[3]
|
Isenberg, J. and Gutfinger, C. (1973) Heat Transfer to a Draining Film. International Journal of Heat and Mass Transfer, 16, 505-512. http://dx.doi.org/10.1016/0017-9310(73)90075-6
|
[4]
|
Dehghan, M. (2004) Weighted Finite Difference Techniques for One Dimensional Advection-Difffusion Equation. Applied Mathematics and Computation, 147, 307-319. http://dx.doi.org/10.1016/S0096-3003(02)00667-7
|
[5]
|
Karahan, H. (2007) Unconditional Stable Explicit Finite Difference Technique for the Advection-Diffusion Equation Using Spreadsheets. Advances in Engineering Software, 38, 80-84. http://dx.doi.org/10.1016/j.advengsoft.2006.08.001
|
[6]
|
Liang, D. and Zhao, W. (1997) A High-Order Upwind Method for the Convection-Diffusion Problem. Computer Methods in Applied Mechanics and Engineering, 147, 105-115. http://dx.doi.org/10.1016/S0045-7825(97)00004-2
|
[7]
|
Dehghan, M. (2005) On the Numerical Solution of the One Dimensional Convection-Diffusion Equation. Mathematical Problems in Engineering, 1, 61-74. http://dx.doi.org/10.1155/MPE.2005.61
|
[8]
|
Golbabai, A. and Javidi, M. (2009) A Spectral Domain Decomposition Approach for the Generalized Burger’s-Fisher Equation. Chaos, Solitons & Fractals, 39, 385-392. http://dx.doi.org/10.1016/j.chaos.2007.04.013
|
[9]
|
Mohammadi, A., Manteghian, M. and Mohammadi, A. (2011) Numerical Solution of the One-Dimensional Advection-Diffusion Equation Using Simultaneously Temporal and Spatial Weighted Parameters. Australian Journal of Basic and Applied Sciences, 5, 1536-1543.
|
[10]
|
Kumar, A., Jaiswal, D.K. and Kumar, N. (2010) Analytical Solutions to One-Dimensional Advection-Diffusion Equation with Variable Coefficients in Semi-Infinite Media. Journal of Hydrology, 380, 330-337.
http://dx.doi.org/10.1016/j.jhydrol.2009.11.008
|
[11]
|
Liu, H. and Yan, J. (2009) The Direct Discontinuous Galerkin (DDG) Methods for Diffusion Problems. SIAM Journal on Numerical Analysis, 47, 475-694. http://dx.doi.org/10.1137/080720255
|
[12]
|
Kumar, A., Jaiswal, D.K. and Kumar, N. (2009) Analytical Solutions of One-Dimensional Advection-Diffusion Equation with Variable Coefficients in a Finite Domain. Journal of Earth System Science, 118, 539-549.
http://dx.doi.org/10.1007/s12040-009-0049-y
|
[13]
|
Liu, H. and Yan, J. (2010) The Direct Discontinuous Galerkin (DDG) Method for Diffusion with Interface Corrections. Communications in Computational Physics, 8, 541-564. http://dx.doi.org/10.4208/cicp.010909.011209a
|
[14]
|
Zhang, R.-P. and Zhang, L.-W. (2012) Direct Discontinuous Galerkin Method for the Generalized Burgers Fisher Equation. Chinese Physics B, 9, Article ID: 090206. http://dx.doi.org/10.1088/1674-1056/21/9/090206
|
[15]
|
Dahmen, W., Kurdila, J. and Oswald, P. (1997) Multiscale Wavelet Methods for Partial Differential Equations. Academic Press, San Diego.
|
[16]
|
Razzaghi, M. and Yousefi, S. (2001) The Legendre Wavelets Operational Matrix of Integration. International Journal of Systems Science, 32, 495-502. http://dx.doi.org/10.1080/00207720120227
|
[17]
|
Yousefi, S. (2010) Legendre Multiwavelet Galerkin Method for Solving the Hyperbolic Telegraph Equation. Numerical Methods for Partial Differential Equations, 26, 539-543.
|
[18]
|
Gantumur, T. and Stevenson, R.P. (2006) Computation of Differential Operators in Wavelet Coordinates. Mathematics of Computation, 75, 697-710. http://dx.doi.org/10.1090/S0025-5718-05-01807-7
|
[19]
|
Aziz, I., Siraj-ul-Islam and Sarler, B. (2013) Wavelets Collocation Method for Numerical Solution of Elliptic Problems. Applied Mathematical Modelling, 37, 676-694. http://dx.doi.org/10.1016/j.apm.2012.02.046
|
[20]
|
Liandrat, J., Perrier, V. and Tchmitchian, Ph. (1992) Numerical Resolution of Nonlinear Partial Differential Equations Using Wavelet Approach. In: Ruskai, M., Beylkin, G., Coifman, R., Daubechies, I., Mallat, S., Meyer, Y. and Raphael, L., Eds., Wavelets and Their Applications, Jones and Bartlett, Boston, 227-238.
|
[21]
|
Kumar, R.B.V. and Mehra, M. (2006) A Three-Step Wavelet Galerkin Method for Parabolic and Hyperbolic Partial Differential Equations. International Journal of Computer Mathematics, 83, 143-157.
http://dx.doi.org/10.1080/00207160500112985
|
[22]
|
Alpert, B., Beylkin, G., Gines, D. and Vozovoi, L. (2002) Adaptive Solution Partial Differential Equations in Multiwavelet Bases. Journal of Computational Physics, 182, 149-190. http://dx.doi.org/10.1006/jcph.2002.7160
|
[23]
|
Berlkin, G. (1992) On the Representation of Operators in Bases of Compactly Supported Wavelets. SIAM Journal on Numerical Analysis, 6, 1716-1739. http://dx.doi.org/10.1137/0729097
|
[24]
|
Zheng, X., Yang, X., Su, H. and Qiu, L. (2011) Discontinuous Legendre Wavelet Element Method for Elliptic Partial Differential Equations. Applied Mathematics and Computation, 218, 3002-3018.
http://dx.doi.org/10.1016/j.amc.2011.08.045
|
[25]
|
Kima, M.-Y. and Wheelerb, M.F. (2014) A Multiscale Discontinuous Galerkin Method for Convection-Diffusion-Reaction Problems. Computers and Mathematics with Applications, 68, 2251-2261.
http://dx.doi.org/10.1016/j.camwa.2014.08.007
|