Share This Article:

Polarization and Breakdown Analysis of AlGaN Channel HEMTs with AlN Buffer

Abstract Full-Text HTML XML Download Download as PDF (Size:1057KB) PP. 232-243
DOI: 10.4236/wjcmp.2015.53024    3,964 Downloads   4,504 Views   Citations

ABSTRACT

We have demonstrated the first carrier density model for AlGaN channel with AlN buffer using spontaneous and piezoelectric polarization comparison with experimental and theoretical results. From the results we proved that the formation of 2DEG in undoped structure relied both on spontaneous and piezoelectric polarization. The electron distribution of Al concentration (0 < x < 0.5) was measured for both AlGaN channel and barrier. Barrier thickness assumed between 20 and 25 nm for validating the experimental results. The carrier concentration was observed at the specific interface of the N- and Ga-face by assuming x1, x2 = 0. The model results are verified with previously reported experimental data.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Raj, G. , Kumar, M. and Sarkar, C. (2015) Polarization and Breakdown Analysis of AlGaN Channel HEMTs with AlN Buffer. World Journal of Condensed Matter Physics, 5, 232-243. doi: 10.4236/wjcmp.2015.53024.

References

[1] Chung, J.W., Hoke, W.E., Chumbes, E.M. and Palacios, T. (2010) AlGaN/GaN HEMT With 300-GHz fmax. IEEE Electron Device Letters, 31, 195-197.
http://dx.doi.org/10.1109/LED.2009.2038935
[2] Wu, Y.F., Saxler, A., Moore, M., Smith, R.P., Sheppard, S., Chavarkar, P.M., Wisleder, T., Mishra, U.K. and Parikh, P. (2004) 30-W/mm GaN HEMTs by Field Plate Optimization. IEEE Electron Device Letters, 25, 117-119.
http://dx.doi.org/10.1109/LED.2003.822667
[3] Hashimoto, S., Akita, K., Tanabe, T., Nakahata, H., Takeda, K. and Amano, H. (2010) Epitaxial Layers of AlGaN Channel HEMTson AlN Substrates. SEI Technical Review, 71, 83.
[4] Raman, A., Dasgupta, S., Rajan, S., Speck, J.S. and Mishira, U.K. (2008) AlGaN Channel High Electron Mobility Transistors: Device Performance and Power-Switching Figure of Merit. Japanese Journal of Applied Physics, 47, 3359.
http://dx.doi.org/10.1143/JJAP.47.3359
[5] Nanjo, T., Takeuchi, M., Suita, M., Abe, Y., Oishi, T., Tokuda, Y. and Aoyagi, Y. (2008) First Operation of A1GaN Channel High Electron Mobility Transistors. Applied Physics Express, 1, Article ID: 011101.
http://dx.doi.org/10.1143/APEX.1.011101
[6] Nanjo, T., Takeuchi, M., Suita, M., Abe, Y., Oishi, T., Abe, Y., Tokuda, Y. and Aoyagi, Y. (2008) Remarkable Breakdown Voltage Enhancement in AlGaN Channel high Electron Mobility Transistors. Applied Physics Letters, 92, Article ID: 263502.
http://dx.doi.org/10.1063/1.2949087
[7] Nanjo, T., Suita, M., Oishi, T., Abe, Y., Yagyu, E. and Tokuda, Y. (2009) Comparison of the Characteristics of the AlGaN Channel HEMTs Formed on SiC and Sapphire Substrates. Electronics Letters, 45, 424.
http://dx.doi.org/10.1049/el.2009.0129
[8] Jeon, C.M. and (2004) The Improvement of DC Performance in AlGaNGaN HEFTs With Isoelectronic Al-Doped Channels. IEEE Electron Device Letters, 25, 120-122.
http://dx.doi.org/10.1109/LED.2004.824246
[9] Liu, J., Zhou, Y., Chu, R., Cai, Y., Chen, K.J. and Lau, K.M. (2004) Al0.3Ga0.7N/Al0.05Ga0.95N/GaN Composite-Channel HEMTs with Enhanced Linearity. International Electron Devices Meeting (IEDM), 811.
[10] Liu, J., Zhou, Y., Chu, R., Cai, Y., Chen, K.J. and Lau, K.M. (2005) Highly Linear Al0.3Ga0.7N-Al0.05Ga0.95N-GaN Composite-Channel HEMTs. IEEE Electron Device Letters, 26, 145-147.
http://dx.doi.org/10.1109/LED.2005.843218
[11] Bajaj, S., Hung, T.-H., Akyol, F., Nath, D. and Rajan, S. (2014) Modeling of High Composition AlGaN Channel High Electron Mobility Transistors with Large Threshold Voltage. Applied Physics Letters, 105, Article ID: 263503.
http://dx.doi.org/10.1063/1.4905323
[12] Ha, W., Zhang, J.-C., Zhao, S.-L., Ge, S.-S., Wen, H.-J., Zhang, C.-F., Ma, X.-H. and Hao, Y. (2013) AlGaN Channel High Electron Mobility Transistors with Ultra-Low Drain-Induced-Barrier-Lowering Coefficient. Chinese Physics Letters, 30, Article ID: 127201.
http://dx.doi.org/10.1088/0256-307X/30/12/127201
[13] Hashimoto, S., Akita, K., Tanabe, T., Nakahata, H., Takeda, K. and Amano, H. (2010) Sublimation Growth of Nonpolar AlN Single Crystals and Defect Characterization. Physica Status Solidi (C), 7, 1767-1769.
http://dx.doi.org/10.1002/pssc.200983590
[14] Hatano, M., Kunishio, N., Chikaoka, H., Yamazaki, J., Makhzani, Z.B., Yafune, N., Sakuno, K., Hashimoto, S., Akita, K., Yamamoto, Y. and Kuzuhara, M. (2010) Comparative High-Temperature DC Characterization of HEMTs with GaN and AlGaN Channel Layers. CS MANTECH Conference, 17-20 May 2010, Portland.
[15] Tokuda, H., Hatano, M., Yafune, N., Hashimoto, S., Akita, K., Yamamoto, Y. and Kuzuhara, M. (2010) High Al Composition AlGaN-Channel High-Electron-Mobility Transistor on AlN Substrate. Applied Physics Express, 3, Article ID: 121003.
http://dx.doi.org/10.1143/APEX.3.121003
[16] Ambacher, O., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Schaff, W.J. and Eastman, L.F. (1999) Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures. Journal of Applied Physics, 85, 3222.
http://dx.doi.org/10.1063/1.369664
[17] Asai, T., Nagata, K., Mori, T., Nagamatsu, K., Iwaya, M., Kamiyama, S., Amano, H. and Akasaki, I. (2009) Relaxation and Recovery Processes of AlxGa1-xN Grown on AlN Underlying Layer. Journal of Crystal Growth, 311, 2850-2852.
http://dx.doi.org/10.1016/j.jcrysgro.2009.01.028

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.