[1]
|
Wiemann, P. and Keller, N.P. (2014) Strategies for Mining Fungal Natural Products. Journal of Industrial Microbiology & Biotechnology, 41, 301-313. http://dx.doi.org/10.1007/s10295-013-1366-3
|
[2]
|
Hwang, K.S., Kim, H.U., Charusanti, P., Palsson, B.O. and Lee, S.Y. (2014) Systems Biology and Biotechnology of Streptomyces Species for the Production of Secondary Metabolites. Biotechnology Advances, 32, 255-268. http://dx.doi.org/10.1016/j.biotechadv.2013.10.008
|
[3]
|
Bentley, R. (2006) From miso, saké and shoyu to Cosmetics: A Century of Science for Kojic Acid. Natural Product Reports, 23, 1046-1062. http://dx.doi.org/10.1039/b603758p
|
[4]
|
Saruno, R., Kato, F. and Ikeno, T. (1979) Kojic Acid, a Tyrosinase Inhibitor from Aspergillus albus. Agricultural and Biological Chemistry, 43, 1337-1338.
|
[5]
|
Cabanes, J., Charzarra, S. and Garcia-Carmona, F. (1994) Kojic Acid, a Cosmetic Skin Whitening Agent, Is a Slow-Binding Inhibitor of Catecholase Activity of Tyrosinase. Journal of Pharmacy and Pharmacology, 46, 982-985. http://dx.doi.org/10.1111/j.2042-7158.1994.tb03253.x
|
[6]
|
Terabayashi, Y., Sano, M., Yamane, N., Marui, J., Tamano, K., Sagara, J., Dohmoto, M., Oda, K., Ohshima, E., Tachibana, K., Higa, Y., Ohashi, S., Koike, H. and Machida, M. (2010) Identification and Characterization of Genes Responsible for Biosynthesis of Kojic Acid, an Industrially Important Compound from Aspergillus oryzae. Fungal Genetics and Biology, 47, 953-961. http://dx.doi.org/10.1016/j.fgb.2010.08.014
|
[7]
|
Liu, J., Farmer, J.D. Jr., Lane, W.S., Friedman, J., Weissman, I. and Schreiber, S.L. (1991) Calcineurin Is a Common Target of Cyclophilin-Cyclosporin A and FKBP-FK506 Complexes. Cell, 66, 807-815. http://dx.doi.org/10.1016/0092-8674(91)90124-H
|
[8]
|
Kunz, J. and Hall, M.N. (1993) Cyclosporin A, FK506 and Rapamycin: More than Just Immunosuppression. Trends in Biochemical Sciences, 18, 334-338. http://dx.doi.org/10.1016/0968-0004(93)90069-Y
|
[9]
|
Survase, S.A., Kagliwal, L.D., Annapure, U.S. and Singhal, R.S. (2011) Cyclosporin A—A Review on Fermentative Production, Downstream Processing and Pharmacological Applications. Biotechnology Advances, 29, 418-435. http://dx.doi.org/10.1016/j.biotechadv.2011.03.004
|
[10]
|
Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H. and Kanehisa, M. (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 27, 29-34. http://dx.doi.org/10.1093/nar/27.1.29
|
[11]
|
Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28, 27-30.
|
[12]
|
Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. and Tanabe, M. (2012) KEGG for Integration and Interpretation of Large-Scale Molecular Data Sets. Nucleic Acids Research, 40, 109-114. http://dx.doi.org/10.1093/nar/gkr988
|
[13]
|
Karp, P.D., Ouzounis, C.A., Moore-Kochlacs, C., Goldovsky, L., Kaipa, P., Ahrén, D., Tsoka, S., Darzentas, N., Kunin, V. and López-Bigas, N. (2005) Expansion of the BioCyc Collection of Pathway/Genome Databases to 160 Genomes. Nucleic Acids Research, 33, 6083-6089. http://dx.doi.org/10.1093/nar/gki892
|
[14]
|
Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., Jupe, S., Kalatskaya, I., Mahajan, S., May, B., Ndegwa, N., Schmidt, E., Shamovsky, V., Yung, C., Birney, E., Hermjakob, H., D’Eustachio, P. and Stein, L. (2011) Reactome: A Database of Reactions, Pathways and Biological Processes. Nucleic Acids Research, 39, 691-697. http://dx.doi.org/10.1093/nar/gkq1018
|
[15]
|
Karp, P.D. and Caspi, R. (2011) A Survey of Metabolic Databases Emphasizing the MetaCyc Family. Archives of Toxicology, 85, 1015-1033. http://dx.doi.org/10.1007/s00204-011-0705-2
|
[16]
|
Stobbe, M.D., Jansen, G.A., Moerland, P.D. and van Kampen, A.H. (2014) Knowledge Representation in Metabolic Pathway Databases. Briefings in Bioinformatics, 15, 455-470. http://dx.doi.org/10.1093/bib/bbs060
|
[17]
|
Kanehisa, M. (2013) Chemical and Genomic Evolution of Enzyme-Catalyzed Reaction Networks. Federation of European Biochemical Societies, 587, 2731-2737. http://dx.doi.org/10.1016/j.febslet.2013.06.026
|
[18]
|
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. (2004) The KEGG Resource for Deciphering the Genome. Nucleic Acids Research, 32, 277-280. http://dx.doi.org/10.1093/nar/gkh063
|
[19]
|
Barrett, T. and Edgar, R. (2006) Gene Expression Omnibus: Microarray Data Storage, Submission, Retrieval, and Analysis. Methods in Enzymology, 411, 352-369. http://dx.doi.org/10.1016/S0076-6879(06)11019-8
|
[20]
|
Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D. and Brown, P.O. (2000) Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11, 4241-4257. http://dx.doi.org/10.1091/mbc.11.12.4241
|
[21]
|
Umemura, M., Koyama, Y., Takeda, I., Hagiwara, H., Ikegami, T., Koike, H. and Machida, M. (2013) Fine de Novo Sequencing of a Fungal Genome Using Only SOLiD Short Read Data: Verification on Aspergillus oryzae RIB40. PLoS ONE, 8, e63673. http://dx.doi.org/10.1371/journal.pone.0063673
|
[22]
|
Takeda, I., Tamano, K., Yamane, N., Ishii, T., Miura, A., Umemura, M., Terai, G., Baker, S.E., Koike, H. and Machida, M. (2014) Genome Sequence of the Mucoromycotina Fungus Umbelopsis isabellina, an Effective Producer of Lipids. Genome Announcements, 2, e00071-14. http://dx.doi.org/10.1128/genomea.00071-14
|
[23]
|
Moriya, Y, Itoh, M., Okuda, S., Yoshizawa, A.C. and Kanehisa, M. (2007) KAAS: An Automatic Genome Annotation and Pathway Reconstruction Server. Nucleic Acids Research, 35, 182-185. http://dx.doi.org/10.1093/nar/gkm321
|
[24]
|
Sellick, C.A., Campbell, R.N. and Reece, R.J. (2008) Galactose Metabolism in Yeast-Structure and Regulation of the Leloir Pathway Enzymes and the Genes Encoding Them. International Review of Cell and Molecular Biology, 269, 111-150. http://dx.doi.org/10.1016/S1937-6448(08)01003-4
|
[25]
|
Conrad, M., Schothorst, J., Kankipati, H.N., Van Zeebroeck, G., Rubio-Texeira, M. and Thevelein, J.M. (2014) Nutrient Sensing and Signaling in the Yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews, 38, 254-299. http://dx.doi.org/10.1111/1574-6976.12065
|
[26]
|
Johnston, M. (1987) A Model Fungal Gene Regulatory Mechanism: The GAL Genes of Saccharomyces cerevisiae. Microbiological Reviews, 51, 458-476.
|
[27]
|
Bro, C., Knudsen, S., Regenberg, B., Olsson, L. and Nielsen J. (2005) Improvement of Galactose Uptake in Saccharomyces cerevisiae through Overexpression of Phosphoglucomutase: Example of Transcript Analysis as a Tool in Inverse Metabolic Engineering. Applied and Environmental Microbiology, 71, 6465-6472. http://dx.doi.org/10.1128/AEM.71.11.6465-6472.2005
|